Maxent

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Tool for performing analytical continuation for many-body Green’s functions by using the maximum entropy method. From the data of the Green functions on the imaginary axis, users can obtain the values of the Green’s functions on the real axis. This tool supports the several different Green’s functions (Bozonic, Fermionic, anomalous, etc.).

To Detail

EVO

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An application for structure prediction based on the evolutionary algorithm. From an input of the atomic position in a unit cell and possible elements at each atomic position, this application predicts the stable structure and composition from the first-principles calculation and molecular dynamics in combination with the evolutionary algorithm. This application is written in Python, and uses Quantum ESPRESSO and GULP as an external program.

To Detail

Nano-Ignition

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A support application for preparing input files of molecular dynamics calculation. This application supports manual input of atomic coordinates and bond informations, reading files of protain structure database, and editing data by graphical user interface. It also implements various functions such as addition of hydrogen atoms and composition of data. and can treat a large number of atoms using only a moderate memory cost.

To Detail

MateriApps LIVE!

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Debian Live Linux System that contains OS, editors, materials science application software, visualization tools, etc. An environment needed to perform materials science simulations is provided as a one package. By booting up on VirtualBox virtual machine, one can start simulations, such as the first-principles calculation, molecular dynamics, quantum chemical calculation, lattice model calculation, etc, immediately.

To Detail

FullProf

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An application for the Rietveld analysis used in X-ray and neutron diffraction experiments. This application determines lattice constants and atomic coordinates from X-ray and neutron diffraction data on powder samples. It supports Windows and Linux. For Windows version, graphical user interface (GUI) named WinPLOTR can be used.

To Detail

GSAS-II

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An application for the single-crystal analysis and the Rietveld analysis used in X-ray and neutron diffraction experiments. This application determines crystal structure models of materials from X-ray and neutron diffraction data on single-crystal and powder samples. It has been developed based on Python. Graphical user interface (GUI) can be used.

To Detail

GNXAS

  • Level of openness 2 ★★☆
  • Document quality 3 ★★★

An application for analysis of extended X-ray absorption fine structure (EXAFS) based on the multiple scattering theory. This application implements relativistic self-consistent calculation using the muffin-tin approximation to evaluate atomic phase shift including effect of neighboring atoms. Spectra with any number of edges can be treated simultaneously. Complex background multi-electron excitation can also be evaluated.

To Detail

RIETAN-FP

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An application for the Rietveld analysis used in X-ray and neutron diffraction experiments. This application determines lattice constants and atomic coordinates from X-ray and neutron diffraction data on powder samples by pattern fitting based on the maximum entropy method (MEM). It can also analyze materials with random atomic configuration effectively. It supports Windows and Mac OS, and is still being developed actively.

To Detail

GSYS

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

A tool to extract numerical data from graphs in pictures. Operations of GSYS is based on the GUI and it is easy to generate the numerical data from the given graph.

To Detail

M2TD

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

This software is for constructing inter-atomic force fields that mostly fit the results of ab-initio calculations, using multi-canonical molecular dynamic simulations. Various potential functions such as silicon, ionic crystal, and water have been pre-installed, and the user’s potential function can also be used. The default ab initio calculation solver is xTAPP and other calculation libraries are also applicable.

To Detail