A python library for pre- and post-processing of first-principles electronic structure calculations. As a pre-processing tool, it can automatically generate k-point pathways for first-principles calculations of band structures based on the crystal symmetry. It can also post-process first-principles calculation results to generate band structure and density of states plots with atomic species and orbital contributions, or visualize spin textures and Fermi surfaces. It also provides a functionality for band unfolding.
Python library for the Open Quantum Materials Database, a first-principles computational database. qmpy supports several analysis tools such as crystal structures and phase diagrams. Users can perform automatic calculations using VASP.
An application for evaluation of thermoelectric properties and its visualization. Seebeck coefficients and Peltier coefficients can be calculated from output of the first-principles applications, OpenMX and TranSIESTA. Obtained results as well as electron density and density of states can be visualized.
Code for unfolding first-principles electronic energy bands calculated using supercells into the corresponding primary-cell Brillouin zone. It uses maximally-localized Wannier functions calculated using Wannier90.
An application for adding a function of the replica exchange method to the existing applications for molecular dynamics simulation such as MODYLAS, AMBER, and CHARMM. Without changing original programs of molecular dynamics, the replica exchange method can be implemented easily. This application also shows high performance in massive parallel computing by the K-computer.
An application for the Rietveld analysis used in X-ray and neutron diffraction experiments. This application determines lattice constants and atomic coordinates from X-ray and neutron diffraction data on powder samples by pattern fitting based on the maximum entropy method (MEM). It can also analyze materials with random atomic configuration effectively. It supports Windows and Mac OS, and is still being developed actively.
A sparse-modeling tool for computing the spectral function from the imaginary-time Green function. It removes statistical errors in quantum Monte Carlo data, and performs a stable analytical continuation. The obtained spectral function fulfills the non-negativity and the sum rule. The computation is fast and free from tuning parameters.
An open-source application for evaluating superconducting gaps from resutls of the first-principles calculation by Quantum ESPRESSO. By calculating electron-phonon interaction and screened Coulomb interaction from the first-principles calculation, superconducting gaps can be obtained from the gap equation. Quasiparticle densities of states and ultrasonic attenuation rates can also be calculated.
An application for evaluating thermodynamic quantities and phase diagrams of alloys and compounds. This application can calculate thermal-equilibrium phase diagrams and thermodynamic quantities of alloys and compounds in combination with databases, and can be utilized for evaluation and prediction of physical properties in materials science and metallurgy. It supports various models of thermodynamics, and also includes useful tools for plotting phase diagrams.
An interface tool for combining first-principles calculation based on density functional theory (DFT) and TRIQS, the application for dynamical mean-field theory (DMFT). By combining Wien2k and TRIQS, self-consistent DFT+DMFT calculation can be realized by this tool. One-shot DFT+DMFT calculation using band structures obtained by other first-principles applications is also possible.