Inelastica

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A pre/post-processing application for SIESTA and TranSIESTA. This application can calculate phonon frequencies, electron-phonon coupling, and contributions of inelastic scattering to the conductance. It also provides a Python interface for accessing data in the Hamiltonian output from SIESTA.

To Detail

VASP TST tools

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A package including patches and scripts for adding transition-state calculation to the first-principles calculation application VASP. This package adds new functions to VASP such as calculation of reaction paths, transition-state structures, and rate constants, as well as a set of scripts for setting up calculations and analyzing results. A program for the Bader analysis for atomic charge assignment is also included.

To Detail

Nano-Ignition

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A support application for preparing input files of molecular dynamics calculation. This application supports manual input of atomic coordinates and bond informations, reading files of protain structure database, and editing data by graphical user interface. It also implements various functions such as addition of hydrogen atoms and composition of data. and can treat a large number of atoms using only a moderate memory cost.

To Detail

GASP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An application for structure prediction based on the genetic algorithm. This application can predict the structure and composition of stable phase of crystals, molecules, atomic clusters, and so on by using first-principles calculation and molecular dynamics. This application implements interfaces with various programs such as VASP, LAMMPS, MOPAC, GULP, JDFTx, etc, and runs efficiently on parallel computing architectures.

To Detail

BSA

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Fitting data to a scaling law of critical phenomena, we automatically estimate critical point and indices. Since Bayesian method is flexible, we can use all data in a critical region.

To Detail

Advance/NanoLabo

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Advance / NanoLabo is an integrated GUI which can graphically operates various calculation solvers such as Quantum ESPRESSO, LAMMPS, Advance / PHASE. It is easy to set modeling and calculation conditions by automatically searching information in typical materials databases such as Materials Project. Results calculated by solvers are graphically displayed instantaneously.

To Detail

TRIQS/DFT tools

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An interface tool for combining first-principles calculation based on density functional theory (DFT) and TRIQS, the application for dynamical mean-field theory (DMFT). By combining Wien2k and TRIQS, self-consistent DFT+DMFT calculation can be realized by this tool. One-shot DFT+DMFT calculation using band structures obtained by other first-principles applications is also possible.

To Detail

ATAT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A set of tools for alloy theory analysis in combination with first-principles calculation packages. Free energy and thermodynamic phase diagrams of alloy systems are calculated by combining the cluster expansion method with Monte Carlo simulations. Interfaces with major first-principles code including Quantum Espresso, VASP, and ABINIT are provided.

To Detail

GSAS-II

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An application for the single-crystal analysis and the Rietveld analysis used in X-ray and neutron diffraction experiments. This application determines crystal structure models of materials from X-ray and neutron diffraction data on single-crystal and powder samples. It has been developed based on Python. Graphical user interface (GUI) can be used.

To Detail

Maxent

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Tool for performing analytical continuation for many-body Green’s functions by using the maximum entropy method. From the data of the Green functions on the imaginary axis, users can obtain the values of the Green’s functions on the real axis. This tool supports the several different Green’s functions (Bozonic, Fermionic, anomalous, etc.).

To Detail