CTM4XAS

  • Level of openness 2 ★★☆
  • Document quality 3 ★★★

An application for X-ray spectroscopy analysis based on atomic multiple-state calculation. This application performs multiplet calculation for transition-metal and rare-earth elements by taking into account effect of crystal fields and charge transfer, and can determine physical parameters by comparison between theory and experimental data via fitting. It implements useful graphical user interface(GUI), realizing intuitive operation.

To Detail

DCA++

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

DCA++ is a software framework to solve correlated electron problems with modern quantum cluster methods. This code provides a state of the art implementation of the dynamical cluster approximation (DCA) and its DCA+ extension. As the cluster solvers, DCA++ provides the continuous-time auxiliary field QMC (CT-AUX) , the continuous-time hybridization expansion (CT-HYB) restricted to single-site problems, the high temperature series expansion (HTS) and the exact diagonalization(ED).

To Detail

DCore

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A tool for performing quantum many-body simulations based on dynamical mean-field theory. In addition to predefined models, one can construct and solve an ab-initio tight-binding model by using wannier 90 or RESPACK. We provide a post-processing tool for computing physical quantities such as the density of state and the momentum resolved spectral function. DCore depends on external libraries such as TRIQS and ALPSCore.

To Detail

DDMRG

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

DDMRG (DynamicalDMRG) is a program for analyzing the dynamical properties of one-dimensional electron systems by using the density matrix renormalization group method. It simulates excited or photo-induced quantum phenomena in Mott insulators, spin-Peierls materials, organic materials, etc. Parallel computational procedures for linear and non-linear responses in low dimensional electron systems and analyzing routines for relaxation processes of excited states induced by photo-irradiation are available.

To Detail

Demeter

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for data analysis of X-ray absorption fine structure (XAFS). Experimental data of XAFS can be analyzed by various analysis methods. This application supports various analysis functions (high-speed Fourier analysis, fitting in a radial coordinate or k-space, data plotting, etc.) based on IFEFFIT, and includes useful graphical user interface (GUI).

To Detail

DiracQ

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

DiracQ is a Mathematica nodebook for calculating commutation relations, which frequently appear in the quantum mechanics. DiracQ can treat canonical operators (canonical momentum and canonical position operators), Fermion operators, and Boson operators.

To Detail

DMRG++

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for simulation based on the density-matrix renormalization group (DMRG). This application can perform high-speed calculation of low-dimensional quantum systems with high accuracy. It implements generic programming techniques in the C++ language, and can easily extend simulation to new models and geometries. It is developed putting emphasis on user-friendly interfaces and low dependences on environments.

To Detail

DSQSS

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

DSQSS is an application program for solving quantum many body problems in a discrete set (typically a lattice). It carries out quantum Monte Carlo simulations that sample from the Feynman path integral using the worm update. It can handle any lattice geometry and interaction.

To Detail

EDlib

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

EDlib is an app for performing finite-temperature exact diagonalizations for quantum many-body systems. EDlib is written in C++ and it is possible to obtain finite-temperature properties such as the one-body Green’s function in the Hubbard model and the Anderson model.

To Detail

FEFF

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

An ab-initio calculation package for X-ray spectrum analysis. X-ray spectra such as XAFS, XANES, etc. are predicted theoretically by multiple-scattering calculations based on real-space Green’s function formalism. A graphical user interface is provided. The license is provided for a fee for both non-profit and commercial users.

To Detail