Python library for the design, simulation, and optimization of continuous-variable quantum optical circuits. It has high-level functions for solving problems including graph and network optimization, machine learning, and chemistry, and can perform training and optimization of quantum programs using the TensorFlow backend.
Python code for a chemical database, PubChem. Users can search data in PubChem by compound name, structural information and so on. It is also possible to receive outputs as a Pandas DataFrame.
An open-source application for first-principles molecular dynamics simulation based on pseudo-potential and plane-wave basis set. This application enables accurate molecular dynamics by density functional theory and Car-Parrinello method. It also supports structure optimization, Born-Oppenheimer molecular dynamics, path-integral molecular dynamics, calculation of response functions, the QM/MM method, and excited-state calculation.
An open-source application for micromagnetic simulation from an atomic scale to an micro-meter scale. This application can perform dynamical simulation of spins and phase-space search based on a Monte Calro method. This application can also treat complex systems such as antiferromagnets and alloys. The code is written in object-oriented programing, and is optimized for efficient parallel computing.
An application for prediction of stable and metastable structures from a chemical composition. This application applies the revolutionary algorithm to structure prediction by using various external energy calculators (VASP, GULP, Quantum Espresso, CASTEP).
i-PI is a universal force engine interface written in Python, designed to be used together with an ab-initio (or force-field based) evaluation of the interactions between the atoms. This application includes a large number of sophisticated methods such as replica exchange molecular dynamics (REMD) and path integral molecular dynamics (PIMD). Inter-atomic forces can be computed by using external codes such as CP2K, Quantum ESPRESSO and LAMMPS.
Software framework for training a machine learning model to reproduce first-principles energies and then using the model to perform configurational sampling in disordered systems. It has been developed with an emphasis on multi-component solid-state systems such as metal and oxide alloys. At present, Quantum Espresso, VASP and OpenMX can be used as first-principles energy calculators, and aenet can be used to construct neural network potentials.
A fast molecular dynamics simulator for ferroelectrics. This simulator can execute molecular dynamics calculations quickly by dealing with dipole interaction efficiently. It can simulate the physical property of microscopic ferroelectric thin film of tens of nanometers, which is important in FeRAM(Ferroelectric Random Access Memory), controlling the shapes and effects of inactivated layers.
An open-source application for the first-principles calculation by the all-electron calculation method based on plane wave bases. In addition to standard methods (LDA, GGA, etc.), the LDA+U method, treatment of spin-orbit interaction (noncolinear magnetism), and calculation of phonons are supported. Hybrid parallel computing by OpenMP and MPI is also supported.
OCTA is an integrated simulation system for soft materials developed by the joint project of industry and academia funded by Ministry of Economy, Trade and Industry(METI), Japan. OCTA consists of four simulation engines named COGNAC(Molecular dynamics simulation), PASTA(rheology simulation), SUSHI(mean field theory), MUFFIN(continuum theory) and a simulation platform (GOURMET).