WannierTools is an open-source software package for investigation of novel topological materials. This code works in the tight-binding framework, which can be generated by another software package Wannier90. Users can perform calculations of the Wilson loop, positions of Weyl/Dirac points, nodal line structures, andthe Berry phase around a closed momentum loop and Berry curvature in a part of the Brillouin zone.
An open source C++ library designed for the development of tensor network algorithms. The goal of this library is to provide basic tensor operations with an easy-to-use interface, and it also provides a Network class that handles the graphical representation of networks. A wrapper for calling it from Python is also provided.
Easy-to-use and fast Python library for simulation of quantum information and quantum many-body systems. It provides Tensor module for tensor network simulations and Matrix module for “exact” quantum simulations.
A package for the auxiliary field Quantum Monte Carlo method, which enables us to calculate finite-temperature properties of the Hubbard-type model. It is also possible to treat the Hubbard model coupled to a transversed Ising field. Many examples such as Hubbard model on the square lattice and the honeycomb lattice are provided in the documentation.
Debian Live Linux System that contains OS, editors, materials science application software, visualization tools, etc. An environment needed to perform materials science simulations is provided as a one package. By booting up on VirtualBox virtual machine, one can start simulations, such as the first-principles calculation, molecular dynamics, quantum chemical calculation, lattice model calculation, etc, immediately.
An open-source application for first-principles calculation based on pseudo- potential and real-space basis. It performs electronic-state calculation such as band calculation of solids and structure optimization for a variety of physical systems. The method of time-dependent density functional theory (TDDFT) is implemented, which allows simulation of dynamical phenomena with real-time evolution of electronic states, such as chemical reaction and electronic response to time-dependent external fields. Comes with detailed tutorials and comprehensive manuals.
An open-source application for modeling, visualization, and analysis of biomolecule systems such as proteins, nuclear acids, and lipid bilayers. This application visualizes biomolecules by reading Protein Data Bank (PDB) files. It supports various options in rendering and coloring of molecules, and also can animate the result of a molecular dynamics simulation.
COMmon Bayesian Optimization Library (COMBO) is an open source python library for machine learning techniques. COMBO is amenable to large scale problems, because the computational time grows only linearly as the number of candidates increases. Hyperparameters of a prediction model can be automatically learned from data by maximizing type-II likelihood.
ComDMFT is a massively parallel computational package to study the electronic structure of correlated-electron systems. Users can perform a parameter-free method based on ab initio linearized quasiparticle self-consistent GW (LQSGW) and dynamical mean field theory (DMFT).
An open source framework for quantum computation. By using Qiskit, users can generate quantum circuits and run it on simulators and real devices.