Wannier90

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A program for generating maximally-localized Wannier functions from results of first-principles calculation. This program supports Quantum Espresso, abinit, SIESTA, FLEUR, Wien2k, and VASP. It can also calculate electrical conductivity and material properties related to the berry phase from the obtained MLWFs.

To Detail

WEST

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

WEST is a package for calculating excited spectrum by using the one-shot GW method. Before calculating the excited spectrum, it is necessary to obtain the ground states from the DFT calculations (LDA/GGA/hybrid functional) by Quantum ESPRESSO. To reduce the numerical cost, WEST uses the algorithm that does not require the unoccupied bands. It is also possible to include the spin-orbit couplings and to perform the large-scale calculations at supercomputers. Installation and formats of input files are basically the same as those of Quantum ESPRESSO.

To Detail

WIEN2k

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

Program package for first-principles calculation based on all-electron calculation method and augmented plane-wave basis. This package performs electronic-state calculation such as band calculation of solids, structure optimization, first-principles molecular dynamics, and so on. All-electron method, which treats core electrons, improves accuracy in calculation compared with pseudo-potential method, and enables us to obtain chemical shifts related to core electrons. This payware can be used by making a contract with the developer.

To Detail

Z2Pack

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Analytical tool to calculate the Z2 topological number or Chern number from given band structures, which are derived from first-principles calculations or tight-binding Hamiltonians. The topological numbers are calculated from the evolution of Wannier charge center and this method is applicable to the systems without inversion symmetries.

To Detail

Yambo

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Code for performing many-body calculations based on the GW method, BSE method, etc. starting from Kohn-Sham wave functions obtained using density functional theory. The code relies on wave function output from either abinit or Quantum Espresso. A python interface, Yambo-py, is also under development.

To Detail

QUANTUM ESPRESSO

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Open-source program for first-principles calculation based on pseudo-potential and plane-wave basis. This package performs electronic-state calculation with high accuracy based on density functional theory. In addition to basic-set programs, many core-packages and plugins are included. This package can be utilized for academic research and industrial development, and also supports parallel computing.

To Detail

Zindaiji3

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for visualization of large-scale many-particle simulation. This application can visualize information on a large number of particles treated in calculation of gravitational many-body problems, and provides many features for creating animations. It implements high-speed visualization with OpenGL, and supports graphical user interface (GUI) for operations.

To Detail

PLUMED

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open source library to calculate free energy in molecular dynamics simulation. It supports several famous molecular dynamics software packages such as Amber and Lammps.

To Detail

DCore

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A tool for performing quantum many-body simulations based on dynamical mean-field theory. In addition to predefined models, one can construct and solve an ab-initio tight-binding model by using wannier 90 or RESPACK. We provide a post-processing tool for computing physical quantities such as the density of state and the momentum resolved spectral function. DCore depends on external libraries such as TRIQS and ALPSCore.

To Detail

QCMaquis

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for obtaining optimized many-body wavefunctions expressed by matrix product states (MPS). By using a second-generation density matrix renormalization group (DMRG) algorithm, many-body wave functions can be efficiently optimized. The quantum-chemical operators are represented by matrix product operators (MPOs), which provides flexibility to accommodate various symmetries and relativistic effects.

To Detail