GNXAS

  • Level of openness 2 ★★☆
  • Document quality 3 ★★★

An application for analysis of extended X-ray absorption fine structure (EXAFS) based on the multiple scattering theory. This application implements relativistic self-consistent calculation using the muffin-tin approximation to evaluate atomic phase shift including effect of neighboring atoms. Spectra with any number of edges can be treated simultaneously. Complex background multi-electron excitation can also be evaluated.

To Detail

POV-Ray

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for three-dimensional visualization with the ray tracing method. This application can visualize arbitrary positions and shapes of objects such as spheres and cubes. It can visualize three-dimensional data obtained from computational fluid dynamics etc. by volume rendering. It can also be used for simple three-dimensional graphical simulator with macro functions.

To Detail

OpenMX

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

OpenMX is a first-principles software based on the pseudo-atomic localized basis functions. It calculates electronic structure rapidly for a wide range of materials including crystals, interfaces, liquids, etc. It speedily provides molecular dynamics simulation and structural optimization of large-scale systems and also implements a hybrid parallelism. It is able to deal with non-collinear magnetism and non-equilibrium Green’s function calculations for electrical conductions.

To Detail

USPEX

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for prediction of stable and metastable structures from a chemical composition. For prediction of structures, this application combines the first-principles calculation by external packages (VASP, GULP, siesta, Quantum Espresso, STM4, CP2k, etc.) with various efficient algorithms such as the evolutionary algorithm.
It can be applied to prediction of, e.g., structure of crystals under extreme pressure, nanoparticles, and surface reconstruction.

To Detail

GPAW

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for first-principles calculation based on the PAW method. By utilizing real-space or atom-localized basis sets, this application performs electronic structure calculation based on the density functional theory as well as the GW approximation. Simulations are set up using the interface provided by Atomic Simulation Environment (ASE). The code is written in C and python, and is available under GPL.

To Detail

Vampire

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for micromagnetic simulation from an atomic scale to an micro-meter scale. This application can perform dynamical simulation of spins and phase-space search based on a Monte Calro method. This application can also treat complex systems such as antiferromagnets and alloys. The code is written in object-oriented programing, and is optimized for efficient parallel computing.

To Detail

pymatgen

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A python library for materials analysis. Flexible classes for representation of materials are prepared, and data for crystal structures and various material properties can be handled efficiently. This application can performs analysis of phase diagrams, Pourbaix diagrams, diffusion analyses etc. as well as electronic structure analyses such as density of states and band structures. This software is being actively developed keeping close relation with Materials Project.

To Detail

VASP

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★
Program package for first-principles calculation based on PAW-type pseudo-potential. This package performs electronic-state calculation of various physical systems by density functional theory with high speed, and can be used for structure optimization, evaluation of response functions, and chemical reaction. There are many users in the world, and detailed information, manuals, and tutorials are well prepared.
To Detail

Gromacs

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Open-source package for molecular dynamics simulation designed for biological macromolecules. This package can perform molecular dynamics simulation of biological macromolecules such as proteins, lipids, and nuclear acids as well as solutions by controlling temperature and pressure. This package can treat long-range interaction and free energy, and is designed for parallel computing.

To Detail

PyMOL

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for visualization of biopolymers. This application can visualize biopolymers by using its original command line and graphical user interface, more than 600 settings for visualization, and more than 20 visualization schemes. This application also supports more than 30 file formats such as PDB and multi-SDF, and can utilize sophisticated visualization methods such as the ray tracing.

To Detail