RuNNer

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

FORTRAN-based software package developed by the Behler Group for implementing Behler-Parinello neural network potentials. Potentials can be constructed, evaluated, and used for molecular dynamics simulations using LAMMPS. The newest generation of neural network potentials that take into account long-range electrostatic interactions are implemented.

To Detail

SALMON

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Photo-excited electron dynamics simulator based on time-dependent density functional theory using real-time, real-space grids. It can perform calculations of linear photo-response and nonlinear photo-response to pulse radiation in a variety of systems including isolated systems, periodic systems, interfaces/surfaces, etc. It can perform massively parallel calculations in systems consisting of thousands of atoms, and it can also perform multiscale simulation of electron-electromagnetic field-coupled dynamics.

To Detail

scikit-learn

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source library for data mining and data analysis. This package implements various methods of machine learning such as supervised learning (data classification, data regression, etc.), unsupervised learning (data clustering, etc.), and data pre-processing. This package is implemented on Python numerical libraries, NumPy and Scipy, and supports parallel computation.

To Detail

SeeK-path

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A tool for generating wavevector paths in band calculations of solids. It identifies high-symmetry points in reciprocal space based on the symmetry of the crystal and provides a standardized “path” connecting them. It supports various crystal structure formats (such as POSCAR and CIF) and is compatible with many electronic structure calculation software (e.g., VASP, Quantum ESPRESSO, ABINIT). A web-based interface is also available.

To Detail

SHRY

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A python tool for generating symmetry-inequivalent supercell structures from a CIF file containing site occupancy information. SHRY can be used as a command-line tool as well as a module in a python script.

To Detail

Siesta

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing pseudo-potentials and atom-localized basis sets. This application is capable of performing electronic structure calculations, structural relaxation, and molecular dynamics in a wide range of systems based on density functional theory. By adopting atom-localized basis sets, it realizes high-speed electronic calculation and linear-scaling in suitable computer systems. It can also perform electronic conductance calculations based on non-equilibrium Green’s function method.

To Detail

SIMPLE-NN

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software package to implement Behler-Parinello neural network potentials. Potentials can be trained from structure-energy/ interatomic forces/stress data, and molecular dynamics calculations using LAMMPS can also be performed using learned potentials. A prediction uncertainty measure can also be calculated simultaneously.

To Detail

SMASH

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Open source software for massively parallel quantum chemistry calculations. Energies and geometries of nano-sized molecules can be calculated without fragmentation. The program supports Hartree-Fock, density functional theory, and second-order Møller-Plesset perturbation theory calculations. The input format, execution method, and program structure are simple, and frequently used routines can be easily extracted.

To Detail

snake-dmrg

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for simulation of low-dimensional interacting electron models based on density-matrix renormalization group (DMRG). For effective models of one-dimensional quantum systems and impurity systems, this application can treat not only physical quantities of ground states but also time evolution and finite-temperature physical quantities. The program is coded in C++, and can be called from MATLAB scripts.

To Detail

Spglib

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A library related to the symmetry of crystal structures. By providing a crystal structure, Spglib can detect information related to the symmetry of the structure, such as symmetry operations, a space group and a primitive cell. It can also generate irreducible wave numbers. Spglib is written in C, but various interfaces are available, including Python, Fortran, and Rust.

To Detail