OpenFermion

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open-source software for quantum computing in quantum chemistry. OpenFermion can map the ab-initio Hamiltonian of an target molecular or material in second quantization to that in qubits. Parameters of the Hamiltonian is estimated by using other software for first-principles calculations. OpenFermion also provides users plugins to support integration with apps for quantum circuits and quantum simulators.

To Detail

ComDMFT

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

ComDMFT is a massively parallel computational package to study the electronic structure of correlated-electron systems. Users can perform a parameter-free method based on ab initio linearized quasiparticle self-consistent GW (LQSGW) and dynamical mean field theory (DMFT).

 

To Detail

AMULET

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

AMULET is a collection of tools for a first principles calculation of physical properties of strongly correlated materials. It is based on density functional theory (DFT) combined with dynamical mean-field theory (DMFT). Users can calculate physical properties of chemically disordered compounds and alloys within CPA+DMFT formalism.

To Detail

Blueqat

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open-source Python code for simulation of gate-type quantum computers. Blueqat can call Qiskit, a quantum computing development tool, to run IBM Q, a gate-type quantum computer.

To Detail

Cirq

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A Python framework for easy creation, manipulation and optimization of quantum algorithms for NISQ (Noisy Intermediate Scale Quantum Computer). A simulator for the quantum processor in the Xmon architecture provided by Google has also been supported.

To Detail

TeNeS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A solver program for two dimensional quantum lattice model based on a projected entangled pair state wavefunction and the corner transfer matrix renormalization group method.
This works on a massively parallel machine because tensor operations are OpenMP/MPI parallelized.

To Detail

abICS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software framework for training a machine learning model to reproduce first-principles energies and then using the model to perform configurational sampling in disordered systems. It has been developed with an emphasis on multi-component solid-state systems such as metal and oxide alloys. At present, Quantum Espresso, VASP and OpenMX can be used as first-principles energy calculators, and aenet can be used to construct neural network potentials.

To Detail

QuTiP

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for dynamical simulation of open quantum systems. It supports a wide range of Hamiltonians such as quantum optics, ion traps, and superconducting circuits. The time evolution of quantum states is evaluated by a master equation. These calculation library can be called from Python via a user-friendly interface.

To Detail

Matrix Product Toolkit

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A program package for numerically solving effective lattice models using matrix product states (MPS). The ground state of a one-dimensional quantum system and its time evolution can be numerically evaluated by using an infinite system algorithm based on MPS. Useful tutorials and examples of calculations are also provided.

To Detail

CIF2Cell

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

CIF2Cell is a tool to generate a crystal structure part of an input file of first-principles calculation software from crystal structure data file in CIF format. It supports various first-principles calculation codes such as ABINIT, Quantum Espresso, and VASP.

To Detail