Qbox

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles molecular dynamics based on a pseudopotential method using plane bases. This application can perform electronic-state calculation and molecular dynamics employing the Car-Parrinello method. It implements MPI parallelization, which enables us to perform efficient parallel computing in various environments including large-scale parallel computers. The program is written in C++, and is distributed in source form under the GPL license.

To Detail

QMAS

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

QMAS is an ab-initio electronic-structure computational code package based on the projector augmented-wave (PAW) with a plane wave basis set. It computes electronic states and various physical properties efficiently with high precision for a wide range of physical systems. It provides geometry optimization, electronic states in a static magnetic field, permittivity distribution at the atomic-scale, energy and stress distribution, positron annihilation parameters, and so forth.

To Detail

QTWARE

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An application for evaluation of thermoelectric properties and its visualization. Seebeck coefficients and Peltier coefficients can be calculated from output of the first-principles applications, OpenMX and TranSIESTA. Obtained results as well as electron density and density of states can be visualized.

To Detail

QUANTUM ESPRESSO

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Open-source program for first-principles calculation based on pseudo-potential and plane-wave basis. This package performs electronic-state calculation with high accuracy based on density functional theory. In addition to basic-set programs, many core-packages and plugins are included. This package can be utilized for academic research and industrial development, and also supports parallel computing.

To Detail

Quloud-RSDFT

  • Level of openness 0 ☆☆☆
  • Document quality 0 ☆☆☆

Provides a complete set of environments necessary for computational materials science research in the cloud. A web browser is all that is needed to start a full range of first-principles simulations, including modeling, calculation, data storage, and analysis. RSDFT is used as the engine, and the lineup will be expanded in the future. Data can be shared within a group, and structural data from other software such as GAUSSIAN and VASP can be read.

To Detail

RESPACK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

RESPACK is a first-principles calculation software for evaluating the interaction parameters of materials. It is able to calculate the maximally localized Wannier functions, the RPA response functions, and frequency-dependent electronic interaction parameters. RESPACK receives its input data from a band calculation using norm-conserving pseudopotentials with plane-wave basis sets. Utilities which convert a result of xTAPP or Quantum ESPRESSO to an input for RESPACK are prepared. The software has been used successfully for a wide range of materials such as metals, semiconductors, transition-metal compounds, and organic compounds. It supports OpenMP / MPI parallelization.

To Detail

RSDFT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

RSDFT is an ab-initio program with the real-space difference method and a pseudo-potential method. Using density functional theory (DFT), this calculates electronic states in a vast range of physical systems: crystals, interfaces, molecules, etc. RSDFT is suitable for highly parallel computing because it does not need the fast Fourier transformation. By using the K-computer, this program can calculate the electronic states of around 100,000 atoms. The Gordon Bell Prize for Peak-Performance was awarded to RSDFT in 2011.

To Detail

RSPACE

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

RSPACE is a first-principles code package based on a real-space finite-difference pseudo-potential method. It computes electronic states with high-speed and high precision in aperiodic systems of surfaces, solid interfaces, clusters, nanostructures, and so forth. It provides large-scale computing for semiconductor devices of nanostructure surface and interface reactions, calculation of transport properties in semi-infinite boundary conditions, and a massively parallel computing using the space partitioning method.

To Detail

SALMON

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Photo-excited electron dynamics simulator based on time-dependent density functional theory using real-time, real-space grids. It can perform calculations of linear photo-response and nonlinear photo-response to pulse radiation in a variety of systems including isolated systems, periodic systems, interfaces/surfaces, etc. It can perform massively parallel calculations in systems consisting of thousands of atoms, and it can also perform multiscale simulation of electron-electromagnetic field-coupled dynamics.

To Detail

Siesta

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing pseudo-potentials and atom-localized basis sets. This application is capable of performing electronic structure calculations, structural relaxation, and molecular dynamics in a wide range of systems based on density functional theory. By adopting atom-localized basis sets, it realizes high-speed electronic calculation and linear-scaling in suitable computer systems. It can also perform electronic conductance calculations based on non-equilibrium Green’s function method.

To Detail