An open-source numerical library for machine learning. Using other machine learning numerical libraries (TensorFlow, CNTK, Theano, etc.), users can construct neural networks by relatively short codes. Since a number of methods in machine learning and deep learning are implemented, users can try state-of-the-art methods easily. This package is written by Python.
An application for first-principles calculation based on the all-electron method. This application implements not only normal electronic state calculation (band calculation) but also a quasi-particle GW method for self-consistent (or one-shot) calculation of excitation spectrum and quasi-particle band. Combining with dynamical mean-field theory, self-consistent calculation including many-body effect can also be performed.
An open-source application for quantum chemical calculation. This package implements various methods for quantum chemical calculation such as Hartree-Fock approximation, density functional theory, coupled-cluster method, and CI (configuration interaction) method. The package is written in C++, and provides API for Python, by which users can perform for preparation of setting and execution of calculation.
A program package for numerically solving effective lattice models using matrix product states (MPS). The ground state of a one-dimensional quantum system and its time evolution can be numerically evaluated by using an infinite system algorithm based on MPS. Useful tutorials and examples of calculations are also provided.
Easy-to-use and fast Python library for simulation of quantum information and quantum many-body systems. It provides Tensor module for tensor network simulations and Matrix module for “exact” quantum simulations.
An AI system for predicting protein conformation. It is possible to predict the three-dimensional structure (folding structure) of a protein from its primary sequence (amino acid sequence). It learns hundreds of thousands of protein structure databases and uses DeepMind-based deep learning techniques to predict the conformation of new proteins from their amino acid sequences.
A tool for generating wavevector paths in band calculations of solids. It identifies high-symmetry points in reciprocal space based on the symmetry of the crystal and provides a standardized “path” connecting them. It supports various crystal structure formats (such as POSCAR and CIF) and is compatible with many electronic structure calculation software (e.g., VASP, Quantum ESPRESSO, ABINIT). A web-based interface is also available.
An electronic state solver distributed with GAMESS, the quantum chemical (QM) calculation software. Combining energy density analysis and Divide-and-Conquer (DC) method, accurate QM calculation with electronic correlation is solved in a short time. Highly accurate QM calculations for many-atom/nano-scale material can be solved when run on a high performance super computer.
An ab-initio calculation package for X-ray spectrum analysis. X-ray spectra such as XAFS, XANES, etc. are predicted theoretically by multiple-scattering calculations based on real-space Green’s function formalism. A graphical user interface is provided. The license is provided for a fee for both non-profit and commercial users.