A tool for performing quantum many-body simulations based on dynamical mean-field theory. In addition to predefined models, one can construct and solve an ab-initio tight-binding model by using wannier 90 or RESPACK. We provide a post-processing tool for computing physical quantities such as the density of state and the momentum resolved spectral function. DCore depends on external libraries such as TRIQS and ALPSCore.
An open-source application for obtaining optimized many-body wavefunctions expressed by matrix product states (MPS). By using a second-generation density matrix renormalization group (DMRG) algorithm, many-body wave functions can be efficiently optimized. The quantum-chemical operators are represented by matrix product operators (MPOs), which provides flexibility to accommodate various symmetries and relativistic effects.
An open-source application for visualization of atoms and molecules developed for molecular dynamics. This application supports a number of input file formats for molecular configration, and can perform visualization of three-dimensional atom configration as well as creation of a animation. The main feature of this application is that various useful analysis tools can be used by intuitive control of a graphical user interface (GUI).
A numerical library for machine learning. Various functions on machine learning (including supervised learning and unsupervised learning) are implemented in this package. Complex network can be expressed in a simple form by using data flow graphs. Efficient CPU/GPGPU parallel computation is supported to realise efficient operation on large scale data.
An open-source library for machine learning. Various functions on machine learning/deep learning are implemented in this package. Using flexible user-friendly description, various types of networks from simple to complex ones can be implemented. GPGPU parallel computation based on CUDA is also supported.
An open-source library for machine learning. Various functions on deep learning based on neural network can be used by this package. This package is especially customised for image identification, and a number of sample codes are prepared. Users can also use pre-trained models, which are open in Caffe Model Zoo. Since this package is written in C++, high-speed operation is realised.
An open-source library for data mining and data analysis. This package implements various methods of machine learning such as supervised learning (data classification, data regression, etc.), unsupervised learning (data clustering, etc.), and data pre-processing. This package is implemented on Python numerical libraries, NumPy and Scipy, and supports parallel computation.
An open-source numerical library for machine learning. Various functions related to deep learning are implemented. This package directly treats equations as such, and have useful routines such as matrix operation and auto partial derivative. Users can convert their codes into C language, and can compile it. High speed operation by GPGPU parallel calculation is supported. A number of tutorials are available.
An open-source numerical library for machine learning. Various functions related to deep learning based on neural networks are implemented. Users can implement complex network with flexible description, and can try various state-of-the-art methods. This package is used in a number of companies in the world. This package is written by the script language, lua.
An interface package to use Torch (the open-source numerical library for machine learning) from Python. Users can easily implement deep learning based on neural networks, and can use various state-of-the-art methods. This package supports GPGPU parallel computation, and realises high-speed operation. A front-end interface for C++ is also prepared.