A Boltzmann transport equation solver for calculating lattice thermal conductivity based on phonon information obtained from first-principles calculations. It takes into account three-phonon interactions and enables first-principles analysis of thermal transport properties in solids, including anisotropic crystals, complex structures, and those containing defects. Tutorials and input-support tools are also provided. A tool for calculating third-order force constants (thirdorder.py) is also available on the same website.
A benchmark framework for evaluating general-purpose, i.e., universal, machine learning potentials, along with a leaderboard based on those evaluations. Rankings are determined by a comprehensive assessment that considers the accuracy of predicted formation energy of materials, structural relaxation, and thermal conductivity. Recently, in addition to public research institutions such as universities, major companies like Meta, Microsoft, and Google have also joined the development of universal potentials, taking top positions on the leaderboard.
A software package that generates high-accuracy interatomic potentials using deep learning trained on first-principles molecular dynamics data. The DeePMD model enables molecular dynamics simulations with density functional theory (DFT) accuracy at greatly reduced computational cost. It can be coupled with molecular dynamics codes such as LAMMPS, and is widely applicable to large-scale systems, high-temperature and high-pressure conditions, and the exploration of novel materials.
A graphical user interface (GUI) program for pre- and post-processing for the DFT package SIESTA. It allows visualizing band structures and density of states obtained by SIESTA and editing atom configurations. Structure data can also be output in input file formats compatible with other DFT packages such as VASP, CRYSTAL, and Quantum ESPRESSO.
An application for DFTB (Density Functional Tight Binding) calculation combined with Divide-and-Conquer (DC) method. The DC-DFTB-K program enables geometry optimization and molecular dynamics simulation of large molecular systems with linear-scaling computational cost. DFTB electronic structure calculation of 1 million atom system has been demonstrated using MPI/OpenMP hybrid parallel computation on the K computer.
An application for ab initio quantum chemical calculation. This application performs electronic structure calculation of molecules by the Hartree-Fock, density functional, the many-body perturbation, configuration interaction theories, and so on. While this application is a derivative of GAMESS-US for specific use of Intel compatible CPU, it does not include recently developed calculation methods such as the CC and FMO methods.
A GUI program for structure modeling of giant molecules. This application consists of two programs, “fumodel” and “fuplot”. The former supports preparation of input data for FMO in GAMESS, whereas the latter is software for making graphs from numerical results obtained by FMO.
An application for the Rietveld analysis used in X-ray and neutron diffraction experiments. This application determines lattice constants and atomic coordinates from X-ray and neutron diffraction data on powder samples. It supports Windows and Linux. For Windows version, graphical user interface (GUI) named WinPLOTR can be used.