OpenPhase

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for the phase-field simulations. This application treats many kinds of problems in materials science such as determination of phase diagrams, crystal growing, small structures accompanied by first-order transition, and so on. Its source code is open under the GPL, and is developed putting emphasis on its flexibility in the C++ language.

To Detail

OACIS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source framework for execution management of numerical simulation. By registering target simulators, information at the time of execution (parameters, date and time, hostname, version of simulators, etc.) and calculation results are saved automatically on database. Job submission and browse of job status can be performed efficiently from web browsers.

To Detail

ORCA

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application of semi-empirical/ab-initio quantum chemical calculation that comes under an academic license. It performs various quantum chemical calculations based on Hartree-Fock theory, density functional theory, and configuration interaction theory, yielding electronic states and enabling structure optimization and molecular spectrum analysis. Molecular dynamics calculation based on the QM/MM method is also possible by using this software in combination with GROMACS.

To Detail

Osaka2k

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing pseudo-potentials and plane-wave basis sets. This application is capable of performing electronic structure calculations of a wide range of physical systems such as crystals and surfaces/interfaces. It supports structure relaxation, phonon-dispersion calculation, and molecular dynamics simulation, and can deal with systems with the spin-orbit interaction.

To Detail

Open Source MPS

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An open-source application for simulation of one-dimensional interacting electron models based on a tensor product wavefunction method. This application supports not only electronic models but also spin and bosonic models, and can evaluate various physical quantities for ground states and low-lying excited states. This application also supports time evolution, and can treat models with long-range interactions.

To Detail

OpenFermion

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open-source software for quantum computing in quantum chemistry. OpenFermion can map the ab-initio Hamiltonian of an target molecular or material in second quantization to that in qubits. Parameters of the Hamiltonian is estimated by using other software for first-principles calculations. OpenFermion also provides users plugins to support integration with apps for quantum circuits and quantum simulators.

To Detail

OpenFFT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

OpenFFT is an open source parallel package for computing multi-dimensional Fast Fourier Transforms (3-D and 4-D FFTs) of both real and complex numbers of arbitrary input size. It originates from OpenMX (Open source package for Material eXplorer). OpenFFT adopts a communication-optimal domain decomposition method that is adaptive and capable of localizing data when transposing from one dimension to another for reducing the total volume of communication. It is written in C and MPI, with support for Fortran through the Fortran interface, and employs FFTW3 for computing 1-D FFTs.

To Detail

OpenKIM

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Open-source tools and a database for molecular simulation. Data of molecular models (interatomic potentials and force fields), result data of molecular simulation, and test tools can be downloaded freely. API (Application Programming Interface) for exchanging information between atomistic simulation codes and interatomic models is also provided.

To Detail

OpenMX

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

OpenMX is a first-principles software based on the pseudo-atomic localized basis functions. It calculates electronic structure rapidly for a wide range of materials including crystals, interfaces, liquids, etc. It speedily provides molecular dynamics simulation and structural optimization of large-scale systems and also implements a hybrid parallelism. It is able to deal with non-collinear magnetism and non-equilibrium Green’s function calculations for electrical conductions.

To Detail

OCTA

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

OCTA is an integrated simulation system for soft materials developed by the joint project of industry and academia funded by Ministry of Economy, Trade and Industry(METI), Japan. OCTA consists of four simulation engines named COGNAC(Molecular dynamics simulation), PASTA(rheology simulation), SUSHI(mean field theory), MUFFIN(continuum theory) and a simulation platform (GOURMET).

To Detail