TRIQS/CTHYB

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source solver for the impurity problem based on the continuous-time quantum Monte Carlo method. Imaginary-time Green’s functions of the impurity Anderson model and the effective impurity model in the dynamical mean-field approximation can be calculated with high speed by using an efficient Monte Carlo algorithm. The main programs are written by C++, and can be called from Python scripts.

To Detail

LAMMPS

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A general-purpose open-source application for classical molecular dynamics simulation, distributed under the GPL license. This package can perform molecular dynamics calculation of various systems such as soft matters, solids, and mesoscopic systems. It can be used as a simulator of classical dynamics of realistic atoms as well as general model particles. It supports parallel computing through spatial divisions. Its codes are designed so that their modification and extension are easy.

To Detail

cuscalapack

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

GPU library for pdgemm and pzgemm, which are functions of matrix-matrix operations in ScaLAPACK.

To Detail

Questaal

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for first-principles calculation based on the all-electron method. This application implements not only normal electronic state calculation (band calculation) but also a quasi-particle GW method for self-consistent (or one-shot) calculation of excitation spectrum and quasi-particle band. Combining with dynamical mean-field theory, self-consistent calculation including many-body effect can also be performed.

To Detail

TensorNetwork

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open source library for implementing tensor networks. It is developed based on TensorFlow and is designed to be easily used by experts in the field of machine learning as well as in the field of physics. In addition to TensorFlow, it includes wrappers for JAX, PyTorch, and Numpy.

To Detail

ChemSpider

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

ChemSpider is a free chemical structure database that provides fast access to over 100 million structures, properties, and related information, and is operated by the Royal Society of Chemistry.

By integrating and linking compounds from hundreds of high-quality data sources, ChemSpider makes it easy to find chemical data from diverse data sources that are freely available for online searching. Users can also add and manage data in a wikipedia-like fashion. Meanwhile, manual curation by the Royal Society of Chemistry continuously improves data quality.

To Detail

BigDFT

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for first-principles calculation based on pseudopotential and wavelet basis. Electronic state calculation of massive systems is performed with high accuracy and high efficiency by using adaptive mesh. Parallel computing by MPI, OpenMP, and GPU is also supported.

To Detail

C-Tools

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

This application can produce input files of various applications for density functional theory (DFT) calculations via user-friendly parameter adjustment using three-dimensional computer graphics (3DCG) and graphical user interfaces (GUI). Input-file conversion between different applications is also possible.

To Detail

HORTON

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for quantum chemical calculation. This application can perform quantum chemical calculation based on the Hartree-Fock method and the density functional method. The code is developed on the emphasis of readability and flexibility, and can be called from Python scripts. Quantum chemical calculation based on two-electron wave functions (geminals) is also possible.

To Detail

TAPIOCA

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A tool of input-file preparation and visualization for xTAPP, an application of the first-principle calculation. By graphical user interface (GUI), this application helps xTAPP users for making input files, and visualizes results of wavefunctions, electron densities, and potential profiles into three-dimensional graphics from output files.

To Detail