WannierTools

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

WannierTools is an open-source software package for investigation of novel topological materials. This code works in the tight-binding framework, which can be generated by another software package Wannier90. Users can perform calculations of the Wilson loop, positions of Weyl/Dirac points, nodal line structures, andthe Berry phase around a closed momentum loop and Berry curvature in a part of the Brillouin zone.

To Detail

WEST

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

WEST is a package for calculating excited spectrum by using the one-shot GW method. Before calculating the excited spectrum, it is necessary to obtain the ground states from the DFT calculations (LDA/GGA/hybrid functional) by Quantum ESPRESSO. To reduce the numerical cost, WEST uses the algorithm that does not require the unoccupied bands. It is also possible to include the spin-orbit couplings and to perform the large-scale calculations at supercomputers. Installation and formats of input files are basically the same as those of Quantum ESPRESSO.

To Detail

WIEN2k

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

Program package for first-principles calculation based on all-electron calculation method and augmented plane-wave basis. This package performs electronic-state calculation such as band calculation of solids, structure optimization, first-principles molecular dynamics, and so on. All-electron method, which treats core electrons, improves accuracy in calculation compared with pseudo-potential method, and enables us to obtain chemical shifts related to core electrons. This payware can be used by making a contract with the developer.

To Detail

Winmostar

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

Integrated applications for quantum chemical, molecular dynamics, and first-principles calculations. Users can perform all the operations necessary for simulation by mouse operation, from creating input files, to performing calculations, to analyzing and displaying results. It supports open source software such as GAMESS, NWChem, Gromacs, LAMMPS, Quantum ESPRESSO and OpenMX, as well as industry-standard software such as MOPAC and Gaussian.

To Detail

wxMacMolPlt

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for visualization developed for input and output of GAMESS. This application supports various types of input formats such as GAMESS, XYZ, MolDel, pdb, and CML as well as input by GUI and the Z-matrix format. It can visualize molecular orbitals, electron densities, electrostatic potentials, and normal modes, and can output results into various formats.

To Detail

XCRYSDEN

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for visualization of crystal structures and grid data that runs on most UNIX and UNIX-like platforms. This application can visualize calculation results from the following electronic structure packages: GAUSSIAN, CRYSTAL, Quantum Espresso (PWscf), WIEN2k, FHI98MD. Three-dimensional data such as electron densities and local potentials as well as Fermi surfaces can be visualized using this application.

To Detail

XenonPy

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

XenonPy is a high-throughput material exploration framework based on machine learning technologies. This library can generate various chem/phys descriptors for machine learning to explore materials in virtual environment. Descriptors in matminer can be also used. Model training is done by PyTorch. Visualization tool for descriptor and transfer learning framework are also provided.

To Detail

XtalOpt

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An application for prediction of stable and metastable structures from a chemical composition. This application applies the revolutionary algorithm to structure prediction by using various external energy calculators (VASP, GULP, Quantum Espresso, CASTEP).

To Detail

xTAPP

  • Level of openness 3 ★★★
  • Document quality 0 ☆☆☆

xTAPP is a first-principles plane-wave pseudo-potential code. It computes band structure and electronic states with high precision for a wide range of materials including metals, oxide surfaces, solid interfaces, and so forth. It has support tools and visualization of output and input, is available as a massively parallel computer using OpenMP, MPI, and GPGPU.

To Detail

Yambo

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Code for performing many-body calculations based on the GW method, BSE method, etc. starting from Kohn-Sham wave functions obtained using density functional theory. The code relies on wave function output from either abinit or Quantum Espresso. A python interface, Yambo-py, is also under development.

To Detail