OpenFFT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

OpenFFT is an open source parallel package for computing multi-dimensional Fast Fourier Transforms (3-D and 4-D FFTs) of both real and complex numbers of arbitrary input size. It originates from OpenMX (Open source package for Material eXplorer). OpenFFT adopts a communication-optimal domain decomposition method that is adaptive and capable of localizing data when transposing from one dimension to another for reducing the total volume of communication. It is written in C and MPI, with support for Fortran through the Fortran interface, and employs FFTW3 for computing 1-D FFTs.

To Detail

WEST

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

WEST is a package for calculating excited spectrum by using the one-shot GW method. Before calculating the excited spectrum, it is necessary to obtain the ground states from the DFT calculations (LDA/GGA/hybrid functional) by Quantum ESPRESSO. To reduce the numerical cost, WEST uses the algorithm that does not require the unoccupied bands. It is also possible to include the spin-orbit couplings and to perform the large-scale calculations at supercomputers. Installation and formats of input files are basically the same as those of Quantum ESPRESSO.

To Detail

PLUMED

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open source library to calculate free energy in molecular dynamics simulation. It supports several famous molecular dynamics software packages such as Amber and Lammps.

To Detail

PyTorch

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An interface package to use Torch (the open-source numerical library for machine learning) from Python. Users can easily implement deep learning based on neural networks, and can use various state-of-the-art methods. This package supports GPGPU parallel computation, and realises high-speed operation. A front-end interface for C++ is also prepared.

To Detail

PHYSBO (optimization tools for PHYsics based on Bayesian Optimization )

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

PHYSBO is a Python library for researchers mainly in the materials science field to perform fast and scalable Bayesian optimization based on COMBO (Common Bayesian Optimization). Users can search the candidate with the largest objective function value from candidates listed in advance by using machine learning prediction. PHYSBO can handle a larger amount of data compared with standard implementations such as scikit-learn.

To Detail

MultiPie

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A Python library for manipulating  symmetry operations and automatically generating symmetry-adapted multipole basis (SAMB) based on crystallographic point and space groups. By using QtDraw, users can also visualize the output of this library.

To Detail

DC

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An electronic state solver distributed with GAMESS, the quantum chemical (QM) calculation software. Combining energy density analysis and Divide-and-Conquer (DC) method, accurate QM calculation with electronic correlation is solved in a short time. Highly accurate QM calculations for many-atom/nano-scale material can be solved when run on a high performance super computer.

To Detail

Octopus

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for first-principles calculation based on pseudo- potential and real-space basis. It performs electronic-state calculation such as band calculation of solids and structure optimization for a variety of physical systems. The method of time-dependent density functional theory (TDDFT) is implemented, which allows simulation of dynamical phenomena with real-time evolution of electronic states, such as chemical reaction and electronic response to time-dependent external fields. Comes with detailed tutorials and comprehensive manuals.

To Detail

POV-Ray

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for three-dimensional visualization with the ray tracing method. This application can visualize arbitrary positions and shapes of objects such as spheres and cubes. It can visualize three-dimensional data obtained from computational fluid dynamics etc. by volume rendering. It can also be used for simple three-dimensional graphical simulator with macro functions.

To Detail

XCRYSDEN

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for visualization of crystal structures and grid data that runs on most UNIX and UNIX-like platforms. This application can visualize calculation results from the following electronic structure packages: GAUSSIAN, CRYSTAL, Quantum Espresso (PWscf), WIEN2k, FHI98MD. Three-dimensional data such as electron densities and local potentials as well as Fermi surfaces can be visualized using this application.

To Detail