Tutorial of materials informatics using MateriApps LIVE! and scikit-learn
Last Update:2021/12/09
Materials for tutorial of materials informatics with scikit-learn is being developed by Dr. H. Kino at NIMS.
• https://bitbucket.org/kino_h/mi_python_tutorial_2020_public
In this document, we explain how to set up the environment for tutorials on MateriApps LIVE! and how to run the tutorials.
Version of software:
- MateriApps LIVE! version 2.4 (Debian Stretch, Python 3.5.3)
- scikit-learn 0.18
Installation of tools:
-
- unzip, pandas, seaborn
$ sudo apt install zip python3-pandas python3-seaborn
- cython
$ sudo pip3 install cython
- unzip, pandas, seaborn
- pybtex, pymatgen, pymc3
$ sudo pip3 install pybtex pymatgen pymc3==3.6
- scikit-learn
$ sudo apt install python3-sklearn
Download and extraction of tutorial materials:
$ wget https://bitbucket.org/kino_h/mi_python_tutorial_2020_public/get/10b86d126f56.zip $ unzip 10b86d126f56.zip
Running tutorials:
$ cd kino_h-mi_python_tutorial_2020_public-10b86d126f56 $ ipython notebook
There is a list of tutorials in 0000.0010.Contents.ipynb. Tutorials for regression, clustering, classification, dimension reduction, exhaustive search, image reconstruction, structure search, Bayesian optimization, Bayesian regression are provided.