An application for quantum chemical calculation based on DFTB (Density Functional based Tight Binding). This application performs structure
optimization and molecular dynamics by the DFTB force field as well as ordinary energy calculation, and implements parallel computing by OpenMP. A tool for visualization of molecular orbitals and an extended versions supporting MPI parallel computation or electron transport calculation by the nonequilibrium Green’s function method are also
available.
An open-source application for translating chemical structure format files. More than 110 formats are supported. This application is actively being developed taking into account use and construction of database and application to infomational technology in chemistry (chemoinformatics). A graphical user interface is alsp provided for Windows.
A python library for materials analysis. Flexible classes for representation of materials are prepared, and data for crystal structures and various material properties can be handled efficiently. This application can performs analysis of phase diagrams, Pourbaix diagrams, diffusion analyses etc. as well as electronic structure analyses such as density of states and band structures. This software is being actively developed keeping close relation with Materials Project.
Standard payware for ab-initio quantum chemical calculation. This package performs electronic-state simulation of molecules by various quantum chemical theory such as Hartree-Fock theory, density functional theory, configuration interaction theory, etc. This package can perform structure optimization, calculation of transition states, evaluation of optical responses with high speed, and have many users in the world.
An electronic structure calculation program based on the density functional theory and the pseudo potential scheme with a plane wave basis set. This is a powerful tool to predict the physical properties of unknown materials and to simulate experimental results such as STM and EELS. This also enables users to perform long time molecular dynamics simulations and to analyze chemical reaction processes. This program is available on a wide variety of computers from single-core PCs to massive parallel computers like K computer. The whole source code is open to public.
An application for ab initio quantum chemical calculation. This application can calculate ground states and excited states of molecules by the SCF/DFT, the CASSCF/RASSCF, and the CASPT2/RASPT2 method. It is architected especially for obtaining potential energy surfaces of excited states, and maintains high-speed, high-accuracy, and robust open codes.
An open-source application for first-principles calculation based on pseudo- potential and real-space basis. It performs electronic-state calculation such as band calculation of solids and structure optimization for a variety of physical systems. The method of time-dependent density functional theory (TDDFT) is implemented, which allows simulation of dynamical phenomena with real-time evolution of electronic states, such as chemical reaction and electronic response to time-dependent external fields. Comes with detailed tutorials and comprehensive manuals.
An open-source first-principles calculation library for pseudopotential and all-electron calculations. One of or a mixture of Gaussian and plane wave basis sets can be used. A lot of the development focuses on massively parallel calculations and linear scaling. The user can choose various calculation methods including density functional theory and Hartree-Fock.
A general-purpose open-source application for classical molecular dynamics simulation, distributed under the GPL license. This package can perform molecular dynamics calculation of various systems such as soft matters, solids, and mesoscopic systems. It can be used as a simulator of classical dynamics of realistic atoms as well as general model particles. It supports parallel computing through spatial divisions. Its codes are designed so that their modification and extension are easy.