OQMD: The Open Quantum Materials Database

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A database for thermodynamic properties and crystal structures calculated based on the density functional theory by a research group in Northwestern University. OQMD provides over one million data generated by using not only experimental crystal structures provided by ICSD but also those obtained by calculations. Users can search data in OQMD by using Python API.

To Detail

qmpy

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python library for the Open Quantum Materials Database, a first-principles computational database. qmpy supports several analysis tools such as crystal structures and phase diagrams. Users can perform automatic calculations using VASP.

To Detail

AFLOW (Automatic-FLOW)

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A highly efficient framework for crystal structure exploration and property prediction dedicated to material science calculations. This application can automate the setup, execution, and analysis of the results of calculations based primarily on the density functional theory. It provides data on more than millions of crystal structures and can be used for high throughput calculations for material exploration. It also interfaces with various DFT codes (VASP, Quantum ESPRESSO, etc.).

To Detail

ATAT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A set of tools for alloy theory analysis in combination with first-principles calculation packages. Free energy and thermodynamic phase diagrams of alloy systems are calculated by combining the cluster expansion method with Monte Carlo simulations. Interfaces with major first-principles code including Quantum Espresso, VASP, and ABINIT are provided.

To Detail

CCCM

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

CCCM is a high-order CCM (coupled cluster method) code for lattice spin systems. It is possible to obtain the ground state and its energy of quantum spin systems in two or three dimensions.

To Detail

MDACP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

MDACP (Molecular Dynamics code for Avogadro Challenge Project) is an efficient implementations of classical molecular dynamics (MD) method for the Lennard-Jones particle systems. MDACP Ver. 1.xx adopts flat-MPI and Ver. 2.xx adopts MPI+OpenMP hybrid parallelization.

To Detail

CHARMM

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

A general-purpose application for molecular dynamics simulation equipped with many tools. This package was originally developed for biomolecules (peptides, proteins, nuclear acids, etc.), and the current version can perform molecular dynamics simulation for various systems such as solutions, crystals, membranes, and so on. It supports several sampling methods and calculation of free energy. It also supports various computing environments including both serial and parallel computers.

To Detail

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An exact diagonalization package for a wide range of quantum lattice models (e.g. multi-orbital Hubbard model, Heisenberg model, Kondo lattice model). HΦ also supports the massively parallel computations. The Lanczos algorithm for obtaining the ground state and thermal pure quantum state method for finite-temperature calculations are implemented. In addition, dynamical Green’s functions can be calculated using , which is a library of the shifted Krylov subspace method. It is possible to perform simulations for real-time evolution from ver. 3.0.

To Detail

SPINPACK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A free software library for numerical diagonalization of quantum spin systems. Although the programs are based on TITPACK, they have been completely rewritten in C/C++ and several extensions have been added. It can handle, for example, the Heisenberg model, the Hubbard model, and the t-J model. This library supports dimension reduction of matrices exploiting symmetries, and it can run in parallel computing environments.

To Detail

MMSP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of C++ interfaces for simulation of mesoscale properties based on grid data. By using provided header files, one can easily construct programs for simulation of various phenomena such as solidification, crystal growth, and spinodal decomposition, based on a Monte Carlo method, cellar automaton, and a phase-field method. This interface supports parallel computing by MPI, and also provides converters of output files for visualization software such as ParaView.

To Detail