An application for molecular science simulation. This application covers not only traditional simulation methods implemented in existing applications but also a number of novel methods for quantum chemical calculation. It can perform ab-initio electronic state calculation for a few thousands atoms/molecules as well as trace calculation of transition states in chemical reaction for a few hundreds atoms/molecules. It can also perform high-efficient massively parallel computing on large-scale parallel computers such as the K-computer.
An open-source application for ab initio quantum chemical calculation. This application performs electronic structure calculation of molecules by the Hartree-Fock, density functional, many-body perturbation, configuration interaction theories, and so on. Even though this application is freeware, it succeeds in maintaining high-quality and high-performance codes by active development, and has a number of world-wide users. It histrically shares core programs with GAMESS-UK.
Payware for ab initio quantum chemical calculation. This application performs high-speed quantum chemical calculation based on the density functional, Hartree-Fock theory, and MP2 theories. It can perform structure optimization, spectrum analysis, evaluation of acid dissociation constants, and so on. It can treat excited states by using TDDFT and CIS. Maestro, an application for visualization produced by the same developer, provides a useful interface for Jaguar.
Payware for first-principles quantum chemical calculation. This application performs molecular orbital calculation based on Hartree-Fock approximation, density functional method, and post-HF methods such as MP, f12, multi-configuration SCF, and coupled cluster method. It also implements calculation by path-integral instanton, quantum Monte Carlo, and density-matrix renormalization group method.
An open-source application for molecular modeling and visualization. This application supports data formats of Gaussian, GAMESS, ADF, and Molden, and has various options for drawing such as orbital, electron density, solvent accessible surface, van der Waals radii, and so on. It implements high-speed and high-quality rendering technology, and runs on Windows, Mac, and Linux.
An open-source application for pre- and post-processing for quantum chemistry calculation. This application can handle outputs from Gaussian, GAMESS, and MOPAC as well as the result of other applications via the Molden format. It supports many graphical interfaces such as Postscript, XWindows, VRML, and OpenGL, and performs visualization of molecular orbitals and electron density. It also produces animation videos of molecular vibration.
An open-source application for visualization of many-particle systems. With simple operation by graphical user interface (GUI) or by command line, this application can visualize particle positions obtained from molecular dynamics simulation as well as three-dimensional scalar quantities such as potential energies. It supports various display options on kinds and shapes of particles, and can also visualize bond formation between particles.
CONQUEST is a linear-scaling DFT (Density Functional Theory) code based on the density matrix minimization method. Since its computational cost, for both memory and computational costs, is only proportional to the number of atoms N of the target systems, the code can employ structure optimization or molecular dynamics on very large-scale systems, including more than hundreds of thousands of atoms. It also has high parallel efficiency and is suitable for massively parallel calculations.
An application for ab initio quantum chemical calculation. This application performs electronic structure calculation of molecules by the Hartree-Fock, density functional, many-body perturbation, configuration interaction theories, and so on. This application is free only for academic use in United Kingdom. Although it histrically shares core programs with GAMESS-US, different functions have been added in later development.