FORTRAN-based software package developed by the Behler Group for implementing Behler-Parinello neural network potentials. Potentials can be constructed, evaluated, and used for molecular dynamics simulations using LAMMPS. The newest generation of neural network potentials that take into account long-range electrostatic interactions are implemented.
An open-source application for first-principles calculation utilizing pseudo-potentials and plane-wave basis sets. This application is capable of performing electronic structure calculations of a wide range of physical systems such as crystals and surfaces/interfaces. It supports structure relaxation, phonon-dispersion calculation, and molecular dynamics simulation, and can deal with systems with the spin-orbit interaction.
Software package that implements moment tensor potentials. Potentials can be trained and used for molecular dynamics calculations using LAMMPS. Active learning combined with molecular dynamics calculations is also available.
An application for molecular science simulation. This application covers not only traditional simulation methods implemented in existing applications but also a number of novel methods for quantum chemical calculation. It can perform ab-initio electronic state calculation for a few thousands atoms/molecules as well as trace calculation of transition states in chemical reaction for a few hundreds atoms/molecules. It can also perform high-efficient massively parallel computing on large-scale parallel computers such as the K-computer.
A results database of first-principle calculation for material science. This database provides numerical data of crystal structures, band structures, thermodynamic quantities, phase diagrams, magnetic moments, and so on. This site is maintained by a research group of MIT, and has extensive data of materials related to lithium battery. In addition to a user interface based on web browsers, an http-based API is also provided to enable user-defined material screening. This database can be used without charge after registration.
An application for ab initio quantum chemical calculation. This application can calculate molecular structures, chemical reactivity, frequency analysis, electron spectrum, and NMR spectrum with high accuracy. It implements the density functional theory, the Hartree-Fock(HF) method as well as recently developed methods such as the post-HF correlation method. It also has GUI for molecular modeling and a tool for preparation of input files.
Standard payware for ab-initio quantum chemical calculation. This package performs electronic-state simulation of molecules by various quantum chemical theory such as Hartree-Fock theory, density functional theory, configuration interaction theory, etc. This package can perform structure optimization, calculation of transition states, evaluation of optical responses with high speed, and have many users in the world.
Payware for quantum chemical calculation based on the density functional theory. This application supports relativistic effects needed in treatment of transition-metal complexes and heavy elements, and can also treat effect of solvents with the method of COSMO and 3D-RISM. In addition to ordinal optical spectra, it can evaluate various spectra data such as NMR, atomic vibration, electron spin resonance, and nuclear quadrupole resonance (NQR).
A unified application for soft materials simulation. This is a commercial application based on OCTA, and includes modeling/analysis tools for individual simulation engines, use-case databases, tools for structure-property relationship analysis as well as basic functions of OCTA. In particular, VSOP, an original solver for molecular dynamics, is added for fast simulation by MPI parallel computing.
Payware for first-principles quantum chemical calculation. This application performs molecular orbital calculation based on Hartree-Fock approximation, density functional method, and post-HF methods such as MP, f12, multi-configuration SCF, and coupled cluster method. It also implements calculation by path-integral instanton, quantum Monte Carlo, and density-matrix renormalization group method.