Debian Live Linux System that contains OS, editors, materials science application software, visualization tools, etc. An environment needed to perform materials science simulations is provided as a one package. By booting up on VirtualBox virtual machine, one can start simulations, such as the first-principles calculation, molecular dynamics, quantum chemical calculation, lattice model calculation, etc, immediately.
Program libraries for alloy modeling analysis using a cluster expansion method. Energy of alloy systems evaluated by other electronic state calculation libraries is used as an input, and atomic configuration effects are evaluated with the accuracy of a first principles calculation. Ground state structures, evaluation of thermodynamic quantities, equilibrium diagrams, disordering by temperature, etc. can be calculated with high accuracy.
A tool for performing quantum many-body simulations based on dynamical mean-field theory. In addition to predefined models, one can construct and solve an ab-initio tight-binding model by using wannier 90 or RESPACK. We provide a post-processing tool for computing physical quantities such as the density of state and the momentum resolved spectral function. DCore depends on external libraries such as TRIQS and ALPSCore.
BerkeleyGW is an open-source program package to calculate quasi-particle spectrum and optical responses from mean-field result by using GW approximation and Bethe-Salpeter equation. This is compatible with output files of many commonly used DFT codes such as Quantum ESPRESSO.
An open-source Python package for calculation of quantum transport properties. Based on tight-binding models, this application can perform high-speed calculation of various transport properties such as conductance, current noise, and density of states. It can describe geometries of physical systems flexibly and easily, and can also treat superconductors, ferromagnetic materials, topological matters, and graphene.
A fast molecular dynamics simulator for ferroelectrics. This simulator can execute molecular dynamics calculations quickly by dealing with dipole interaction efficiently. It can simulate the physical property of microscopic ferroelectric thin film of tens of nanometers, which is important in FeRAM(Ferroelectric Random Access Memory), controlling the shapes and effects of inactivated layers.
ERmod is software for calculating the free energy in soft, molecular aggregate. This program rapidly and accurately calculates the free energy of binding of a molecule in the aggregate through combination of the molecular dynamics simulation and the energy-representation theory of solvation. The solubility of a molecule can be determined with ERmod in arbitrary solvent including supercritical fluid and ionic liquid. Assessment is also possible for the binding strength and site of a molecule in micelle, lipid membrane or protein.
An application for the Rietveld analysis used in X-ray and neutron diffraction experiments. This application determines lattice constants and atomic coordinates from X-ray and neutron diffraction data on powder samples by pattern fitting based on the maximum entropy method (MEM). It can also analyze materials with random atomic configuration effectively. It supports Windows and Mac OS, and is still being developed actively.
A simple open-source application for visualization compatible to Protein Data Bank (PDB) format. This application also supports other formats such as Sybyl, Molden, Mopac, and CHARMM. It is a pioneering piece of software as an interactive PDB viewer.
An open source library for implementing tensor networks. It is developed based on TensorFlow and is designed to be easily used by experts in the field of machine learning as well as in the field of physics. In addition to TensorFlow, it includes wrappers for JAX, PyTorch, and Numpy.