An open-source application for electronic structure calculation based on the diffusion Monte Carlo method. By using output of other packages of first-principles quantum-chemical calculation, this package performs electronic structure calculation with high accuracy. Although its computational cost is high, various physical quantities can be evaluated very accurately. It implements an efficient parallelization algorithm, and supports massively parallel computing.
Software for first-principles calculation based on pseudo-potential and plane-wave basis. This software performs electronic-state calculation of various systems by density functional theory, and can treat structure optimization, excited-state analysis, and so on. This software can be applied to many physical phenomena such as catalysis reaction, calculation of phase diagram, etc. There are many users of this payware in the world.
CCCM is a high-order CCM (coupled cluster method) code for lattice spin systems. It is possible to obtain the ground state and its energy of quantum spin systems in two or three dimensions.
An open-source application for visualization of many-particle systems. With simple operation by graphical user interface (GUI) or by command line, this application can visualize particle positions obtained from molecular dynamics simulation as well as three-dimensional scalar quantities such as potential energies. It supports various display options on kinds and shapes of particles, and can also visualize bond formation between particles.
A general-purpose application for molecular dynamics simulation equipped with many tools. This package was originally developed for biomolecules (peptides, proteins, nuclear acids, etc.), and the current version can perform molecular dynamics simulation for various systems such as solutions, crystals, membranes, and so on. It supports several sampling methods and calculation of free energy. It also supports various computing environments including both serial and parallel computers.
A payware for modeling and visualizing molecules. This software includes a standard editor, ChemDraw, and can perform modeling from chemical structural formula. It implements structure optimization and molecular dynamics by molecular mechanics, and provides useful GUIs for MOPAC, Jaguar, GAMESS, and Gaussian. It can also perform spectroscopy analysis. It is included in high-end packages such as ChemBioOffice and ChemOffice.
Python tool for automatic extraction of chemical substance information from literature. Based on natural language processing algorithms, it can extract substance names and related physical/chemical properties such as melting points and spectra from documents written in English.
ChemSpider is a free chemical structure database that provides fast access to over 100 million structures, properties, and related information, and is operated by the Royal Society of Chemistry.
By integrating and linking compounds from hundreds of high-quality data sources, ChemSpider makes it easy to find chemical data from diverse data sources that are freely available for online searching. Users can also add and manage data in a wikipedia-like fashion. Meanwhile, manual curation by the Royal Society of Chemistry continuously improves data quality.
CIF2Cell is a tool to generate a crystal structure part of an input file of first-principles calculation software from crystal structure data file in CIF format. It supports various first-principles calculation codes such as ABINIT, Quantum Espresso, and VASP.
Program libraries for alloy modeling analysis using a cluster expansion method. Energy of alloy systems evaluated by other electronic state calculation libraries is used as an input, and atomic configuration effects are evaluated with the accuracy of a first principles calculation. Ground state structures, evaluation of thermodynamic quantities, equilibrium diagrams, disordering by temperature, etc. can be calculated with high accuracy.