DiffPy

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for atomic structure analysis from powder diffraction data. This application can calculate atomic coordinates, valence sums, and chemical bonds from diffraction data of crystals, nanostructures, and amorphous materials. It is written in Python, and realizes multi-functional fitting and flexible data analysis.

To Detail

MateriApps Installer

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of shell scripts for installing open-source applications and tools for computational materials science to macOS, Linux PC, cluster workstations, and major supercomputer systems in Japan. Major applications are preinstalled to the nation-wide joint-use supercomputer system at Institute for Solid State Physics, University of Tokyo by using MateriApps Installer.

To Detail

SPINPACK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A free software library for numerical diagonalization of quantum spin systems. Although the programs are based on TITPACK, they have been completely rewritten in C/C++ and several extensions have been added. It can handle, for example, the Heisenberg model, the Hubbard model, and the t-J model. This library supports dimension reduction of matrices exploiting symmetries, and it can run in parallel computing environments.

To Detail

TRIQS/CTHYB

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source solver for the impurity problem based on the continuous-time quantum Monte Carlo method. Imaginary-time Green’s functions of the impurity Anderson model and the effective impurity model in the dynamical mean-field approximation can be calculated with high speed by using an efficient Monte Carlo algorithm. The main programs are written by C++, and can be called from Python scripts.

To Detail

Vampire

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for micromagnetic simulation from an atomic scale to an micro-meter scale. This application can perform dynamical simulation of spins and phase-space search based on a Monte Calro method. This application can also treat complex systems such as antiferromagnets and alloys. The code is written in object-oriented programing, and is optimized for efficient parallel computing.

To Detail

Quantum Unfolding

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Code for unfolding first-principles electronic energy bands calculated using supercells into the corresponding primary-cell Brillouin zone. It uses maximally-localized Wannier functions calculated using Wannier90.

To Detail

Uni10

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open source C++ library designed for the development of tensor network algorithms. The goal of this library is to provide basic tensor operations with an easy-to-use interface, and it also provides a Network class that handles the graphical representation of networks. A wrapper for calling it from Python is also provided.

To Detail

BSA

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Fitting data to a scaling law of critical phenomena, we automatically estimate critical point and indices. Since Bayesian method is flexible, we can use all data in a critical region.

To Detail

EVO

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An application for structure prediction based on the evolutionary algorithm. From an input of the atomic position in a unit cell and possible elements at each atomic position, this application predicts the stable structure and composition from the first-principles calculation and molecular dynamics in combination with the evolutionary algorithm. This application is written in Python, and uses Quantum ESPRESSO and GULP as an external program.

To Detail

myPresto

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Commercially-available free software for Computer-Aided Drug Development. It includes programs for compound database, protein-compound docking, structure-based drug screening, ligand-based drug screening, protein-ligand binding site prediction, molecular editor, physical property prediction, synthetic accessibility prediction, thermodynamic calculation including multi-canonical dynamics, and molecular dynamics simulations with and without acceleration using GPUs and MPI parallelization.

To Detail