VASP TST tools

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A package including patches and scripts for adding transition-state calculation to the first-principles calculation application VASP. This package adds new functions to VASP such as calculation of reaction paths, transition-state structures, and rate constants, as well as a set of scripts for setting up calculations and analyzing results. A program for the Bader analysis for atomic charge assignment is also included.

To Detail

VASPsol

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Application for performing first-principles simulations with an implicit solvent model. The code is released as a patch to VASP. The user can perform molecular dynamics as well as reaction analysis using e.g., nudged elastic band method.

To Detail

Wannier90

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A program for generating maximally-localized Wannier functions from results of first-principles calculation. This program supports Quantum Espresso, abinit, SIESTA, FLEUR, Wien2k, and VASP. It can also calculate electrical conductivity and material properties related to the berry phase from the obtained MLWFs.

To Detail

LmtART

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for all-electron first-principles calculation based on augmented plane-wave basis. It performs electronic-state calculation such as band calculation of solids and structure optimization. The all-electron method, which treats core electrons explicitly, improves accuracy compared with pseudo-potential methods. This package can also treat strong electronic correlations by combining electronic-state calculation with the dynamical mean-field approximation.

To Detail

OpenPhase

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for the phase-field simulations. This application treats many kinds of problems in materials science such as determination of phase diagrams, crystal growing, small structures accompanied by first-order transition, and so on. Its source code is open under the GPL, and is developed putting emphasis on its flexibility in the C++ language.

To Detail

QMCSGF

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open source application implementing path-integral Monte Carlo method based on Stochastic Green function method. Finite temperature calculation of extended Bose Hubbard model and Heisenberg model with finite field can be treated. JSON and YAML formats are adopted for data I/O.

To Detail

LOBSTER

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A post-processor of first-principles calculations for performing COHP (crystal orbital Hamilton population) and COOP (crystal orbital overlap population) chemical bonding analysis. It works with VASP, ABINIT and Quantum ESPRESSO output. The program is provided under an academic-only license.

To Detail

ORCA

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application of semi-empirical/ab-initio quantum chemical calculation that comes under an academic license. It performs various quantum chemical calculations based on Hartree-Fock theory, density functional theory, and configuration interaction theory, yielding electronic states and enabling structure optimization and molecular spectrum analysis. Molecular dynamics calculation based on the QM/MM method is also possible by using this software in combination with GROMACS.

To Detail

QTWARE

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An application for evaluation of thermoelectric properties and its visualization. Seebeck coefficients and Peltier coefficients can be calculated from output of the first-principles applications, OpenMX and TranSIESTA. Obtained results as well as electron density and density of states can be visualized.

To Detail

XCRYSDEN

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for visualization of crystal structures and grid data that runs on most UNIX and UNIX-like platforms. This application can visualize calculation results from the following electronic structure packages: GAUSSIAN, CRYSTAL, Quantum Espresso (PWscf), WIEN2k, FHI98MD. Three-dimensional data such as electron densities and local potentials as well as Fermi surfaces can be visualized using this application.

To Detail