abICS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software framework for training a machine learning model to reproduce first-principles energies and then using the model to perform configurational sampling in disordered systems. It has been developed with an emphasis on multi-component solid-state systems such as metal and oxide alloys. At present, Quantum Espresso, VASP and OpenMX can be used as first-principles energy calculators, and aenet can be used to construct neural network potentials.

To Detail

ABINIT

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Open-source package for first-principles calculation based on pseudo-potential and plane-wave basis. This package performs various electronic-state calculation by density functional theory such as band calculation of solids, and structure optimization of surfaces/interfaces. Detailed tutorials and documents are well prepared in this package, and many physical quantities including chemical reaction and lattice vibration can be obtained easily.

To Detail

ABINIT-MP

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆
An application for quantum chemical calculation based on the fragment molecular orbital (FMO) method. This application can perform fast quantum chemical calculation of large molecules such as biopolymers, and includes graphical user interface (GUI) to help input-data preparation and analysis of simulation results. It also supports parallel computing from small clusters to massive parallel computers such as the Supercomputer Fugaku.
To Detail

ADF

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

Payware for quantum chemical calculation based on the density functional theory. This application supports relativistic effects needed in treatment of transition-metal complexes and heavy elements, and can also treat effect of solvents with the method of COSMO and 3D-RISM. In addition to ordinal optical spectra, it can evaluate various spectra data such as NMR, atomic vibration, electron spin resonance, and nuclear quadrupole resonance (NQR).

To Detail

AFLOWLIB

A results database of first-principle calculation for material science. This database provides numerical data of crystal structures, band structures, thermodynamic quantities, phase diagrams, magnetic moments, and so on. This site is maintained by a research group of Duke University, and in particular, has extensive data of Heusler alloys. In addition to a user interface based on web browsers, an http-based API is also provided to enable user-defined material screening. This database can be used without charge after registration.

To Detail

AkaiKKR

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

AkaiKKR is a first-principles all-electron code package that calculates the electronic structure of condensed matters using the Green’s function method (KKR). It is based on the density functional theory and is applicable to a wide range of physical systems. It can be used to simulate not only periodic crystalline solids, but also used to calculate electronic structures of impurity systems and, by using the coherent potential approximation (CPA), random systems such as disordered alloys, mixed crystals, and spin-disordered systems.

To Detail

ALAMODE

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A program package for constructing interatomic force fields which explicitly consider lattice anharmonicity. In combination with a molecular dynamics simulator LAMMPS and an external first-principles package such as VASP and Quantum ESPRESSO, ALAMODE extracts harmonic/anharmonic force constants of solids and calculates phonon dispersion, phonon DOS, Gruneisen parameter, phonon-phonon scattering probability, lattice thermal-conductivity, anharmonic phonons at finite temperature, phonon free energy and so on.

To Detail

Allegro

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open source software for constructing the Allegro potential model based on E(3)-equivariant graph neural networks and using the potential model for molecular dynamics simulations. The code depends on NequIP and can be run in a similar manner. Allegro scales better than NequIP since it doesn’t rely on message passing and the architecture is strictly local with respect to atom-wise environments.

To Detail

almaBTE

  • Level of openness 0 ☆☆☆
  • Document quality 0 ☆☆☆

An application for calculating thermal transport properties based on the phonon Boltzman equation. This application has its own database for phonon properties of materials, and can utilize it for evaluating heat conductivity and specific heat of crystals, alloys, and heterostructures combining them. Phonon-energy resolved contribution to heat conductivity and specific heat can also be calculated. This application also supports calculation of time-dependent response and steady state analysis.

To Detail

ALPS

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

ALPS is a numerical simulation library for strongly correlated systems such as magnetic materials or correlated electrons. It contains typicalsolvers for strongly correlated systems: Monte Carlo methods, exact diagonalization, the density matrix renormalization group, etc. It can be used to calculate heat capacities, susceptibilities, magnetization processes in interacting spin systems, the density of states in strongly correlated electrons, etc. A highly efficient scheduler for parallel computing is another improvement.

※Related links are temporary changed due to the server maintenance for ALPS project.

To Detail