A set of routines for real-symmetric dense eigenproblems in supercomputers or massively parallel machines. Both of standard and general eigenproblems are supported. A fast computation is achieved by optimal hybrid solvers among eigenproblem libraries of ELPA, EigenExa and ScaLAPACK. The package includes a mini-appli that can be used in a benchmark test.
An application for structure prediction based on the evolutionary algorithm. From an input of the atomic position in a unit cell and possible elements at each atomic position, this application predicts the stable structure and composition from the first-principles calculation and molecular dynamics in combination with the evolutionary algorithm. This application is written in Python, and uses Quantum ESPRESSO and GULP as an external program.
An application for first-principles calculation based on density functional theory (DFT) optimized for X-ray spectroscopy analysis. Theoretical prediction and data fitting for X-ray spectroscopy such as XANES(X-ray absorption fine structure), XMCD(X-ray magnetic circular dichroism), RXD(resonant X-ray diffraction) can be preformes. This application employs a fully relativistic LSDA calculation based on the finite element method, and also supports the LDA+U method and the TD-DFT calculation.
The fragment molecular orbital (FMO) method can efficiently do quantum-mechanical calculations of large molecular systems by splitting the whole system into small fragments. The FMO program is distributed within quantum-chemical program suite GAMESS-US. FMO can provide various information regarding the structure and function of biopolymers, such as the interaction between a protein and a ligand.
An application for the Rietveld analysis used in X-ray and neutron diffraction experiments. This application determines lattice constants and atomic coordinates from X-ray and neutron diffraction data on powder samples. It supports Windows and Linux. For Windows version, graphical user interface (GUI) named WinPLOTR can be used.
An application for structure prediction based on the genetic algorithm. This application can predict the structure and composition of stable phase of crystals, molecules, atomic clusters, and so on by using first-principles calculation and molecular dynamics. This application implements interfaces with various programs such as VASP, LAMMPS, MOPAC, GULP, JDFTx, etc, and runs efficiently on parallel computing architectures.
An application for analysis of extended X-ray absorption fine structure (EXAFS) based on the multiple scattering theory. This application implements relativistic self-consistent calculation using the muffin-tin approximation to evaluate atomic phase shift including effect of neighboring atoms. Spectra with any number of edges can be treated simultaneously. Complex background multi-electron excitation can also be evaluated.
An application for the single-crystal analysis and the Rietveld analysis used in X-ray and neutron diffraction experiments. This application determines crystal structure models of materials from X-ray and neutron diffraction data on single-crystal and powder samples. It has been developed based on Python. Graphical user interface (GUI) can be used.
A tool to extract numerical data from graphs in pictures. Operations of GSYS is based on the GUI and it is easy to generate the numerical data from the given graph.