Software package that implements moment tensor potentials. Potentials can be trained and used for molecular dynamics calculations using LAMMPS. Active learning combined with molecular dynamics calculations is also available.
Application for performing first-principles simulations with an implicit solvent model. The code is released as a patch to VASP. The user can perform molecular dynamics as well as reaction analysis using e.g., nudged elastic band method.
A collection of shell scripts for installing open-source applications and tools for computational materials science to macOS, Linux PC, cluster workstations, and major supercomputer systems in Japan. Major applications are preinstalled to the nation-wide joint-use supercomputer system at Institute for Solid State Physics, University of Tokyo by using MateriApps Installer.
Software package to implement Behler-Parinello neural network potentials. Potentials can be trained from structure-energy/ interatomic forces/stress data, and molecular dynamics calculations using LAMMPS can also be performed using learned potentials. A prediction uncertainty measure can also be calculated simultaneously.
An application program for lattice dynamics calculation of molecules, surfaces, and solids in various boundary conditions. It lays emphasis on analytic calculation of lattice dynamics while it can perform molecular dynamics simulation as well. It supports various force fields to treat ionic materials, organic materials, and metals. It also implements analytic derivatives of the second and third order for many force fields.
ERmod is software for calculating the free energy in soft, molecular aggregate. This program rapidly and accurately calculates the free energy of binding of a molecule in the aggregate through combination of the molecular dynamics simulation and the energy-representation theory of solvation. The solubility of a molecule can be determined with ERmod in arbitrary solvent including supercritical fluid and ionic liquid. Assessment is also possible for the binding strength and site of a molecule in micelle, lipid membrane or protein.
Python/C++ based software package that employs deep learning techniques for construction of interatomic potentials. It implements the Deep Potential, which defines atomic environment descriptors with respect to a local reference frame. The output of many first-principles and molecular dynamics applications can be used as training data, and the trained potentials can be used for molecular dynamics calculations using LAMMPS and path integral molecular dynamics calculations using i-PI.
MODYLAS is a highly parallelized general-purpose molecular dynamics (MD) simulation program appropriate for very large physical, chemical, and biological systems. It is equipped most standard MD techniques including free energy calculations based on thermodynamic integration method. Long-range forces are evaluated rigorously by the fast multipole method (FMM) without using the fast Fourier transform (FFT) in order to realize excellent scalability. The program enables investigations of large-scale real systems such as viruses, liposomes, assemblies of proteins and micelles, and polymers. It works on ordinary linux machines, too.
An open-source application for molecular dynamics. This application can perform molecular dynamics simulation of biopolymers and solvents consisting of a number of molecules/atoms. It implements a number of force field sets and algorithms, and supports parallel computing based on OpenMP. Java graphical user interface (GUI) is also included.
An application for adding a function of the replica exchange method to the existing applications for molecular dynamics simulation such as MODYLAS, AMBER, and CHARMM. Without changing original programs of molecular dynamics, the replica exchange method can be implemented easily. This application also shows high performance in massive parallel computing by the K-computer.