GAMESS-UK

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

An application for ab initio quantum chemical calculation. This application performs electronic structure calculation of molecules by the Hartree-Fock, density functional, many-body perturbation, configuration interaction theories, and so on. This application is free only for academic use in United Kingdom. Although it histrically shares core programs with GAMESS-US, different functions have been added in later development.

To Detail

DeePMD-kit

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python/C++ based software package that employs deep learning techniques for construction of interatomic potentials. It implements the Deep Potential, which defines atomic environment descriptors with respect to a local reference frame. The output of many first-principles and molecular dynamics applications can be used as training data, and the trained potentials can be used for molecular dynamics calculations using LAMMPS and path integral molecular dynamics calculations using i-PI.

To Detail

DC

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An electronic state solver distributed with GAMESS, the quantum chemical (QM) calculation software. Combining energy density analysis and Divide-and-Conquer (DC) method, accurate QM calculation with electronic correlation is solved in a short time. Highly accurate QM calculations for many-atom/nano-scale material can be solved when run on a high performance super computer.

To Detail

MolDS

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An application for semi-empirical quantum chemistry calculation. Special emphasis is placed on molecular dynamics simulations, and is able to run efficiently on large-scale cluster computer systems using OpenMP/MPI hybrid parallelism. The code is still under development, but the source code is distributed freely under the GPL license.

To Detail

RAQET

  • Level of openness 2 ★★☆
  • Document quality 1 ★☆☆

A program package for electronic state calculations based on two-component relativistic quantum chemical theories. Several schemes and algorithms, which are specialized in calculations of molecules containing heavy elements, have been implemented. Single-point energies for ground and excited states, geometry optimizations, and molecular properties are available. Furthermore, the package can perform accurate calculations for molecules including many heavy atoms such as metal clusters with practical computational cost.

To Detail

SMASH

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Open source software for massively parallel quantum chemistry calculations. Energies and geometries of nano-sized molecules can be calculated without fragmentation. The program supports Hartree-Fock, density functional theory, and second-order Møller-Plesset perturbation theory calculations. The input format, execution method, and program structure are simple, and frequently used routines can be easily extracted.

To Detail

k-ep

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Fortran codes for computing the specified k-th eigenvalue and eigenvector for generalized symmetric definite eigenvalue problems. Sylvester’s law of inertia is employed as the fundamental principle in computations, and the sparse direct linear solver (MUMPS) is used in the main routine. By inputting Hamiltonian and its overlap matrices, user can compute electron’s energy and its wave function in the specified k-th energy level.

To Detail

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Kω implements large-scale parallel computing of the shifted Krylov subspace method. Using Kω, dynamical correlation functions can be efficiently calculated. This application includes a mini-application for calculating dynamical correlation functions of quantum lattice models such as the Hubbard model, the Kondo model, and the Heisenberg model in combination with the quantum lattice solver of quantum many-body problems, .

To Detail

DC-DFTB-MD

  • Level of openness 2 ★★☆
  • Document quality 0 ☆☆☆

An application for DFTB (Density Functional Tight Binding) calculation combined with Divide-and-Conquer (DC) method. The DC-DFTB-K program enables geometry optimization and molecular dynamics simulation of large molecular systems with linear-scaling computational cost. DFTB electronic structure calculation of 1 million atom system has been demonstrated using MPI/OpenMP hybrid parallel computation on the K computer.

To Detail

Quloud-RSDFT

  • Level of openness 0 ☆☆☆
  • Document quality 0 ☆☆☆

Provides a complete set of environments necessary for computational materials science research in the cloud. A web browser is all that is needed to start a full range of first-principles simulations, including modeling, calculation, data storage, and analysis. RSDFT is used as the engine, and the lineup will be expanded in the future. Data can be shared within a group, and structural data from other software such as GAUSSIAN and VASP can be read.

To Detail