Gaussian

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

Standard payware for ab-initio quantum chemical calculation. This package performs electronic-state simulation of molecules by various quantum chemical theory such as Hartree-Fock theory, density functional theory, configuration interaction theory, etc. This package can perform structure optimization, calculation of transition states, evaluation of optical responses with high speed, and have many users in the world.

To Detail

HORTON

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for quantum chemical calculation. This application can perform quantum chemical calculation based on the Hartree-Fock method and the density functional method. The code is developed on the emphasis of readability and flexibility, and can be called from Python scripts. Quantum chemical calculation based on two-electron wave functions (geminals) is also possible.

To Detail

Jaguar

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Payware for ab initio quantum chemical calculation. This application performs high-speed quantum chemical calculation based on the density functional, Hartree-Fock theory, and MP2 theories. It can perform structure optimization, spectrum analysis, evaluation of acid dissociation constants, and so on. It can treat excited states by using TDDFT and CIS. Maestro, an application for visualization produced by the same developer, provides a useful interface for Jaguar.

To Detail

k-ep

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Fortran codes for computing the specified k-th eigenvalue and eigenvector for generalized symmetric definite eigenvalue problems. Sylvester’s law of inertia is employed as the fundamental principle in computations, and the sparse direct linear solver (MUMPS) is used in the main routine. By inputting Hamiltonian and its overlap matrices, user can compute electron’s energy and its wave function in the specified k-th energy level.

To Detail

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Kω implements large-scale parallel computing of the shifted Krylov subspace method. Using Kω, dynamical correlation functions can be efficiently calculated. This application includes a mini-application for calculating dynamical correlation functions of quantum lattice models such as the Hubbard model, the Kondo model, and the Heisenberg model in combination with the quantum lattice solver of quantum many-body problems, .

To Detail

MateriApps Installer

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of shell scripts for installing open-source applications and tools for computational materials science to macOS, Linux PC, cluster workstations, and major supercomputer systems in Japan. Major applications are preinstalled to the nation-wide joint-use supercomputer system at Institute for Solid State Physics, University of Tokyo by using MateriApps Installer.

To Detail

MateriApps LIVE!

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Debian Live Linux System that contains OS, editors, materials science application software, visualization tools, etc. An environment needed to perform materials science simulations is provided as a one package. By booting up on VirtualBox virtual machine, one can start simulations, such as the first-principles calculation, molecular dynamics, quantum chemical calculation, lattice model calculation, etc, immediately.

To Detail

MLIP

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

Software package that implements moment tensor potentials. Potentials can be trained and used for molecular dynamics calculations using LAMMPS. Active learning combined with molecular dynamics calculations is also available.

To Detail

Molcas

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

An application for ab initio quantum chemical calculation. This application can calculate ground states and excited states of molecules by the SCF/DFT, the CASSCF/RASSCF, and the CASPT2/RASPT2 method. It is architected especially for obtaining potential energy surfaces of excited states, and maintains high-speed, high-accuracy, and robust open codes.

To Detail

MolDS

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An application for semi-empirical quantum chemistry calculation. Special emphasis is placed on molecular dynamics simulations, and is able to run efficiently on large-scale cluster computer systems using OpenMP/MPI hybrid parallelism. The code is still under development, but the source code is distributed freely under the GPL license.

To Detail