CrySPY

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

CrySPY is a crystal structure prediction tool by utilizing first-principles calculations and a classical MD program. Only by inputting chemical composition, crystal structures can be automatically generated and searched. In ver. 0.6.1, random search, Bayesian optimization, and LAQA are available as searching algorithms. CrySPY is interfaced with VASP, Quantum ESPRESSO, and LAMMPS.

To Detail

XtalOpt

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An application for prediction of stable and metastable structures from a chemical composition. This application applies the revolutionary algorithm to structure prediction by using various external energy calculators (VASP, GULP, Quantum Espresso, CASTEP).

To Detail

GASP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An application for structure prediction based on the genetic algorithm. This application can predict the structure and composition of stable phase of crystals, molecules, atomic clusters, and so on by using first-principles calculation and molecular dynamics. This application implements interfaces with various programs such as VASP, LAMMPS, MOPAC, GULP, JDFTx, etc, and runs efficiently on parallel computing architectures.

To Detail

EVO

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An application for structure prediction based on the evolutionary algorithm. From an input of the atomic position in a unit cell and possible elements at each atomic position, this application predicts the stable structure and composition from the first-principles calculation and molecular dynamics in combination with the evolutionary algorithm. This application is written in Python, and uses Quantum ESPRESSO and GULP as an external program.

To Detail

COMmon Bayesian Optimization Library (COMBO)

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

COMmon Bayesian Optimization Library (COMBO) is an open source python library for machine learning techniques. COMBO is amenable to large scale problems, because the computational time grows only linearly as the number of candidates increases. Hyperparameters of a prediction model can be automatically learned from data by maximizing type-II likelihood.

To Detail