PHYSBO (optimization tools for PHYsics based on Bayesian Optimization )

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

PHYSBO is a Python library for researchers mainly in the materials science field to perform fast and scalable Bayesian optimization based on COMBO (Common Bayesian Optimization). Users can search the candidate with the largest objective function value from candidates listed in advance by using machine learning prediction. PHYSBO can handle a larger amount of data compared with standard implementations such as scikit-learn.

To Detail

PubChemPy

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python code for a chemical database, PubChem. Users can search data in PubChem by compound name, structural information and so on. It is also possible to receive outputs as a Pandas DataFrame.

To Detail

PyTorch

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An interface package to use Torch (the open-source numerical library for machine learning) from Python. Users can easily implement deep learning based on neural networks, and can use various state-of-the-art methods. This package supports GPGPU parallel computation, and realises high-speed operation. A front-end interface for C++ is also prepared.

To Detail

QuCumber

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

QuCumber is an open-source Python package that implements neural-network quantum state reconstruction of many-body wavefunctions from measurement data such as magnetic spin projections, orbital occupation number. Given a training dataset of measurements, QuCumber discovers the most likely quantum state compatible with the measurements by finding the optimal set of parameters of a restricted Boltzmann machine (RBM).

.

To Detail

QUIP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of software tools for molecular dynamics calculations. Various interatomic potentials and tight binding models are implemented, and numerous external applications can be invoked. It also supports training and evaluation of GAP (Gaussian Approximation Potential), which is a form of machine learning potential.

To Detail

RuNNer

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

FORTRAN-based software package developed by the Behler Group for implementing Behler-Parinello neural network potentials. Potentials can be constructed, evaluated, and used for molecular dynamics simulations using LAMMPS. The newest generation of neural network potentials that take into account long-range electrostatic interactions are implemented.

To Detail

scikit-learn

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source library for data mining and data analysis. This package implements various methods of machine learning such as supervised learning (data classification, data regression, etc.), unsupervised learning (data clustering, etc.), and data pre-processing. This package is implemented on Python numerical libraries, NumPy and Scipy, and supports parallel computation.

To Detail

SIMPLE-NN

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software package to implement Behler-Parinello neural network potentials. Potentials can be trained from structure-energy/ interatomic forces/stress data, and molecular dynamics calculations using LAMMPS can also be performed using learned potentials. A prediction uncertainty measure can also be calculated simultaneously.

To Detail

Strawberry Fields

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python library for the design, simulation, and optimization of continuous-variable quantum optical circuits. It has high-level functions for solving problems including graph and network optimization, machine learning, and chemistry, and can perform training and optimization of quantum programs using the TensorFlow backend.

To Detail

TensorFlow

  • Level of openness 2 ★★☆
  • Document quality 3 ★★★

A numerical library for machine learning. Various functions on machine learning (including supervised learning and unsupervised learning) are implemented in this package. Complex network can be expressed in a simple form by using data flow graphs. Efficient CPU/GPGPU parallel computation is supported to realise efficient operation on large scale data.

To Detail