An open-source numerical library for machine learning. Using other machine learning numerical libraries (TensorFlow, CNTK, Theano, etc.), users can construct neural networks by relatively short codes. Since a number of methods in machine learning and deep learning are implemented, users can try state-of-the-art methods easily. This package is written by Python.
A collection of software tools for molecular dynamics calculations. Various interatomic potentials and tight binding models are implemented, and numerous external applications can be invoked. It also supports training and evaluation of GAP (Gaussian Approximation Potential), which is a form of machine learning potential.
XenonPy is a high-throughput material exploration framework based on machine learning technologies. This library can generate various chem/phys descriptors for machine learning to explore materials in virtual environment. Descriptors in matminer can be also used. Model training is done by PyTorch. Visualization tool for descriptor and transfer learning framework are also provided.
NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and machine learning techniques. Users can perform machine learning algorithms to find the ground-state of many-body Hamiltonians such as supervised learning of a given state and optimization of neural network states by using the variational Monte Carlo method.
Open source software for building and using machine learning potentials based on E(3)-equivariant graph neural networks, which can be trained on output files of simulation codes that can be read by ASE. Molecular dynamics calculations with LAMMPS can be performed using the trained potentials.
isqpr is an R package to find candidate molecules that has your desired chemical structures and chemical properties. SMILES (Simplified Molecular Input Line Entry Specification Syntax) is employed to represent chemical structures. To find candidate molecules, sequential Monte Carlo method generates new molecules, whose chemical properties are predicted by machine learning techniques.
aenet is software for atomic interaction potentials using artificial neural networks. Users can construct neural network potentials using structures of target materials and their energies obtained from first principle calculations. The generated potentials can be used to molecular dynamics or Monte Carlo simulations.
Open source software for constructing the Allegro potential model based on E(3)-equivariant graph neural networks and using the potential model for molecular dynamics simulations. The code depends on NequIP and can be run in a similar manner. Allegro scales better than NequIP since it doesn’t rely on message passing and the architecture is strictly local with respect to atom-wise environments.
QuCumber is an open-source Python package that implements neural-network quantum state reconstruction of many-body wavefunctions from measurement data such as magnetic spin projections, orbital occupation number. Given a training dataset of measurements, QuCumber discovers the most likely quantum state compatible with the measurements by finding the optimal set of parameters of a restricted Boltzmann machine (RBM).
.
PHYSBO is a Python library for researchers mainly in the materials science field to perform fast and scalable Bayesian optimization based on COMBO (Common Bayesian Optimization). Users can search the candidate with the largest objective function value from candidates listed in advance by using machine learning prediction. PHYSBO can handle a larger amount of data compared with standard implementations such as scikit-learn.