Siesta

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing pseudo-potentials and atom-localized basis sets. This application is capable of performing electronic structure calculations, structural relaxation, and molecular dynamics in a wide range of systems based on density functional theory. By adopting atom-localized basis sets, it realizes high-speed electronic calculation and linear-scaling in suitable computer systems. It can also perform electronic conductance calculations based on non-equilibrium Green’s function method.

To Detail

SIMPLE-NN

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software package to implement Behler-Parinello neural network potentials. Potentials can be trained from structure-energy/ interatomic forces/stress data, and molecular dynamics calculations using LAMMPS can also be performed using learned potentials. A prediction uncertainty measure can also be calculated simultaneously.

To Detail

SPRKKR

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A open-source application of first-principles calculation for the electronic structure, using the KKR method, a variant of Green’s function method. It is based on the density functional theory and is applicable to crystals and surfaces. The coherent potential approximation (CPA) is adopted, so it can handle not only periodic systems, but also disordered alloys. It can also handle spin-orbit interaction and non-collinear magnetism.

To Detail

STATE

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

STATE is a first-principles plane-wave pseudo-potential code. It provides electronic state calculations and molecular dynamics simulations. This code is suitable for simulating chemical reactions at solid surfaces and solid–liquid interfaces, i.e., It is able to investigate reaction paths and activation barriers of chemical processes at interfaces. It can also include Van der Waals corrections to conventional density functional theory.

To Detail

Superconducting Toolkit (sctk)

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for evaluating superconducting gaps from resutls of the first-principles calculation by Quantum ESPRESSO. By calculating electron-phonon interaction and screened Coulomb interaction from the first-principles calculation, superconducting gaps can be obtained from the gap equation. Quasiparticle densities of states and ultrasonic attenuation rates can also be calculated.

To Detail

TB2J

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A python package for automatic calculation of magnetic effective interactions between atoms (exchange and Dzyaloshinskii-Moriya interactions) from ab initio Hamiltonians based on Wannier functions and LCAO calculations. The package can postprocess Hamiltonians calculated using Wannier90, Siesta, and OpenMX. Input files for magnetic structure simulators such as Vampire can also be generated.

To Detail

TC++

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

TC++ is open-source software for ab initio calculations using the transcorrelated (TC) method. In TC++, users can take account of electron correlations in a Jastrow correlation factor based on the TC method. Electronic structures obtained by Quantum ESPRESSO can be used as an initial state of TC++.

To Detail

TOMBO

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A first principles calculation program using all electron mixture based approach. It targets broad physical systems such as isolated systems, surfaces and interfaces, and crystals, and it calculates all electronic states from core electrons to valence electrons. It deals with calculation methods such as the GW method, and also deals with parallel calculations. It can execute with high accuracy molecular dynamics calculations for electronic excited states based on time dependent density functional theory.

To Detail

TRIQS/DFT tools

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An interface tool for combining first-principles calculation based on density functional theory (DFT) and TRIQS, the application for dynamical mean-field theory (DMFT). By combining Wien2k and TRIQS, self-consistent DFT+DMFT calculation can be realized by this tool. One-shot DFT+DMFT calculation using band structures obtained by other first-principles applications is also possible.

To Detail

TurboRVB

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Ab initio quantum Monte Carlo solver for both molecular and bulk electronic systems. By using the geminal/Pfaffian wavefunction with the Jastrow correlator as the trial wavefunction, users can perform highly accurate variational calculations, structural optimizations and ab initio molecular dynamics for both classical and quantum nuclei.

To Detail