TB2J

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A python package for automatic calculation of magnetic effective interactions between atoms (exchange and Dzyaloshinskii-Moriya interactions) from ab initio Hamiltonians based on Wannier functions and LCAO calculations. The package can postprocess Hamiltonians calculated using Wannier90, Siesta, and OpenMX. Input files for magnetic structure simulators such as Vampire can also be generated.

To Detail

Octopus

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for first-principles calculation based on pseudo- potential and real-space basis. It performs electronic-state calculation such as band calculation of solids and structure optimization for a variety of physical systems. The method of time-dependent density functional theory (TDDFT) is implemented, which allows simulation of dynamical phenomena with real-time evolution of electronic states, such as chemical reaction and electronic response to time-dependent external fields. Comes with detailed tutorials and comprehensive manuals.

To Detail

CrySPY

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

CrySPY is a crystal structure prediction tool by utilizing first-principles calculations and a classical MD program. Only by inputting chemical composition, crystal structures can be automatically generated and searched. In ver. 0.6.1, random search, Bayesian optimization, and LAQA are available as searching algorithms. CrySPY is interfaced with VASP, Quantum ESPRESSO, and LAMMPS.

To Detail

DV-Xα

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing the DV-Xα method. It produces electronic structure for a wide rage of physical systems such as atoms, molecules and crystals. The DV-Xα method realizes high-speed computation for all-electron calculations, and makes it possible to evaluate various physical properties and electron transition probability (especially of core-electron excitation). Tools for supplying input data, and visualizing and post-processing output data are also released.

To Detail

GPAW

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for first-principles calculation based on the PAW method. By utilizing real-space or atom-localized basis sets, this application performs electronic structure calculation based on the density functional theory as well as the GW approximation. Simulations are set up using the interface provided by Atomic Simulation Environment (ASE). The code is written in C and python, and is available under GPL.

To Detail

Pomerol

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Pomerol is an app for calculation one- and two-body Green’s function at finite temperatures for the Hubbard-type model based on the full exact diagonalization. Pomerol is written in C++ and supports the hybrid parallelization (MPI+openMP).

To Detail

GNXAS

  • Level of openness 2 ★★☆
  • Document quality 3 ★★★

An application for analysis of extended X-ray absorption fine structure (EXAFS) based on the multiple scattering theory. This application implements relativistic self-consistent calculation using the muffin-tin approximation to evaluate atomic phase shift including effect of neighboring atoms. Spectra with any number of edges can be treated simultaneously. Complex background multi-electron excitation can also be evaluated.

To Detail

RuNNer

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

FORTRAN-based software package developed by the Behler Group for implementing Behler-Parinello neural network potentials. Potentials can be constructed, evaluated, and used for molecular dynamics simulations using LAMMPS. The newest generation of neural network potentials that take into account long-range electrostatic interactions are implemented.

To Detail

MLIP

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

Software package that implements moment tensor potentials. Potentials can be trained and used for molecular dynamics calculations using LAMMPS. Active learning combined with molecular dynamics calculations is also available.

To Detail

ELSES

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An application for electronic structure calculations and molecular dynamics simulations based on tight-binding approximation. By the Krylov subspace method, this application performs order-N electronic state calculation for large physical systems including a large number of atoms. It also supports massively-parallel computation using MPI/openMP hybrid parallelism, and has demonstrated calculation of 10^7-atom simulation on the K Computer.

To Detail