SHRY

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A python tool for generating symmetry-inequivalent supercell structures from a CIF file containing site occupancy information. SHRY can be used as a command-line tool as well as a module in a python script.

To Detail

FPSEID21

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

First-principles software based on plane-wave basis and norm-conserving pseudopotential methods. Time-dependent DFT has been implemented. Users can perform real-time simulations for electron-ion dynamics under a time-dependent external field. Pseudopotentials with FPSEID21 format should be used, and those are downloadable from the website.

To Detail

TB2J

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A python package for automatic calculation of magnetic effective interactions between atoms (exchange and Dzyaloshinskii-Moriya interactions) from ab initio Hamiltonians based on Wannier functions and LCAO calculations. The package can postprocess Hamiltonians calculated using Wannier90, Siesta, and OpenMX. Input files for magnetic structure simulators such as Vampire can also be generated.

To Detail

PyProcar

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A python library for pre- and post-processing of first-principles electronic structure calculations. As a pre-processing tool, it can automatically generate k-point pathways for first-principles calculations of band structures based on the crystal symmetry. It can also post-process first-principles calculation results to generate band structure and density of states plots with atomic species and orbital contributions, or visualize spin textures and Fermi surfaces. It also provides a functionality for band unfolding.

To Detail

n2p2

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software package that implements Behler-Parinello type neural network potential. The package provides tools for training and evaluating potentials based on given structure-energy data. It also provides an interface with LAMMPS for performing molecular dynamics calculations.

To Detail

RuNNer

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

FORTRAN-based software package developed by the Behler Group for implementing Behler-Parinello neural network potentials. Potentials can be constructed, evaluated, and used for molecular dynamics simulations using LAMMPS. The newest generation of neural network potentials that take into account long-range electrostatic interactions are implemented.

To Detail

MLIP

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

Software package that implements moment tensor potentials. Potentials can be trained and used for molecular dynamics calculations using LAMMPS. Active learning combined with molecular dynamics calculations is also available.

To Detail

SIMPLE-NN

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software package to implement Behler-Parinello neural network potentials. Potentials can be trained from structure-energy/ interatomic forces/stress data, and molecular dynamics calculations using LAMMPS can also be performed using learned potentials. A prediction uncertainty measure can also be calculated simultaneously.

To Detail

DeePMD-kit

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python/C++ based software package that employs deep learning techniques for construction of interatomic potentials. It implements the Deep Potential, which defines atomic environment descriptors with respect to a local reference frame. The output of many first-principles and molecular dynamics applications can be used as training data, and the trained potentials can be used for molecular dynamics calculations using LAMMPS and path integral molecular dynamics calculations using i-PI.

To Detail

QUIP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of software tools for molecular dynamics calculations. Various interatomic potentials and tight binding models are implemented, and numerous external applications can be invoked. It also supports training and evaluation of GAP (Gaussian Approximation Potential), which is a form of machine learning potential.

To Detail