BerkeleyGW

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

BerkeleyGW is an open-source program package to calculate quasi-particle spectrum and optical responses from mean-field result by using GW approximation and Bethe-Salpeter equation. This is compatible with output files of many commonly used DFT codes such as Quantum ESPRESSO.

To Detail

Elk

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for the first-principles calculation by the all-electron calculation method based on plane wave bases. In addition to standard methods (LDA, GGA, etc.), the LDA+U method, treatment of spin-orbit interaction (noncolinear magnetism), and calculation of phonons are supported. Hybrid parallel computing by OpenMP and MPI is also supported.

To Detail

VASP

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★
Program package for first-principles calculation based on PAW-type pseudo-potential. This package performs electronic-state calculation of various physical systems by density functional theory with high speed, and can be used for structure optimization, evaluation of response functions, and chemical reaction. There are many users in the world, and detailed information, manuals, and tutorials are well prepared.
To Detail

FDMNES

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for first-principles calculation based on density functional theory (DFT) optimized for X-ray spectroscopy analysis. Theoretical prediction and data fitting for X-ray spectroscopy such as XANES(X-ray absorption fine structure), XMCD(X-ray magnetic circular dichroism), RXD(resonant X-ray diffraction) can be preformes. This application employs a fully relativistic LSDA calculation based on the finite element method, and also supports the LDA+U method and the TD-DFT calculation.

To Detail

ONETEP

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

An application for first-principles calculation based on the order-N method. This application can perform electronic-state calculation and band calculation for various physical systems. It supports the DFT+U method, the time-dependent DFT method, molecular dynamics, etc., and can also treat van der Waals forces and phonons. By using support applications, generation of input files, transformation between different file formats, and analysis of numerical results can be performed.

To Detail

BigDFT

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for first-principles calculation based on pseudopotential and wavelet basis. Electronic state calculation of massive systems is performed with high accuracy and high efficiency by using adaptive mesh. Parallel computing by MPI, OpenMP, and GPU is also supported.

To Detail

JDFTx

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An application for first-principles calculation by the joint-DFT method based on a plane-wave basis. By implementation of the joint-DFT method, this application realizes a good convergence for electronic state calculation of molecules in liquid, particular for charged systems. This application is written by C++11, and supports GPU calculation by CUDA. This application also supports diffusive Monte Carlo simulation in cooperation with CASINO.

To Detail

PySCF

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python-based simulations of chemistry framework (PySCF) is a general-purpose electronic structure platform written in Python. Users can perform mean-field and post-mean-field methods with standard Gaussian basis functions. This package also provides several interfaces to other software such as BLOCK and Libxc.

To Detail

TurboRVB

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Ab initio quantum Monte Carlo solver for both molecular and bulk electronic systems. By using the geminal/Pfaffian wavefunction with the Jastrow correlator as the trial wavefunction, users can perform highly accurate variational calculations, structural optimizations and ab initio molecular dynamics for both classical and quantum nuclei.

To Detail

CPMD

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles molecular dynamics simulation based on pseudo-potential and plane-wave basis set. This application enables accurate molecular dynamics by density functional theory and Car-Parrinello method. It also supports structure optimization, Born-Oppenheimer molecular dynamics, path-integral molecular dynamics, calculation of response functions, the QM/MM method, and excited-state calculation.

To Detail