OpenFOAM

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source multi-purpose application for simulation of fluids and continuous fields. This application can treat complex fluids including chemical reaction, turbulence, thermal condition, and combustion as well as thermal conduction of solids, stress fields, magnetohydrodynamics, and so on. It supports parallel computing, and also prepares pre- and post-processing functions. It is coded by C++ to keep high efficiency in development, debugging, and maintenance.

To Detail

LOBSTER

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A post-processor of first-principles calculations for performing COHP (crystal orbital Hamilton population) and COOP (crystal orbital overlap population) chemical bonding analysis. It works with VASP, ABINIT and Quantum ESPRESSO output. The program is provided under an academic-only license.

To Detail

QCMaquis

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for obtaining optimized many-body wavefunctions expressed by matrix product states (MPS). By using a second-generation density matrix renormalization group (DMRG) algorithm, many-body wave functions can be efficiently optimized. The quantum-chemical operators are represented by matrix product operators (MPOs), which provides flexibility to accommodate various symmetries and relativistic effects.

To Detail

Questaal

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for first-principles calculation based on the all-electron method. This application implements not only normal electronic state calculation (band calculation) but also a quasi-particle GW method for self-consistent (or one-shot) calculation of excitation spectrum and quasi-particle band. Combining with dynamical mean-field theory, self-consistent calculation including many-body effect can also be performed.

To Detail

TensorNetwork

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open source library for implementing tensor networks. It is developed based on TensorFlow and is designed to be easily used by experts in the field of machine learning as well as in the field of physics. In addition to TensorFlow, it includes wrappers for JAX, PyTorch, and Numpy.

To Detail

DC

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An electronic state solver distributed with GAMESS, the quantum chemical (QM) calculation software. Combining energy density analysis and Divide-and-Conquer (DC) method, accurate QM calculation with electronic correlation is solved in a short time. Highly accurate QM calculations for many-atom/nano-scale material can be solved when run on a high performance super computer.

To Detail

Avogadro

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application of molecular modeling/editing for quantum chemical calculation. This application supports graphical user interface (GUI) for input-file preparation for software of quantum chemical calculation such as GAMESS, Gaussian, etc., and displays their results by reading output files. It can also make movies in the formats of vector graphics, POV-Ray, and so on.

To Detail

HOOMD-blue

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source multi-purpose application for many-particle simulation. This application prepares various kinds of statistical methods and potentials, and can perform simulation of rigid-body mechanics, Langevin dynamics, dissipative-particle dynamics, nonequilibrium molecular dynamics, and so on. It prepares python scripts for production of initial conditions, job submission, and analysis of results.

To Detail

SPRKKR

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A open-source application of first-principles calculation for the electronic structure, using the KKR method, a variant of Green’s function method. It is based on the density functional theory and is applicable to crystals and surfaces. The coherent potential approximation (CPA) is adopted, so it can handle not only periodic systems, but also disordered alloys. It can also handle spin-orbit interaction and non-collinear magnetism.

To Detail

USPEX

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for prediction of stable and metastable structures from a chemical composition. For prediction of structures, this application combines the first-principles calculation by external packages (VASP, GULP, siesta, Quantum Espresso, STM4, CP2k, etc.) with various efficient algorithms such as the evolutionary algorithm.
It can be applied to prediction of, e.g., structure of crystals under extreme pressure, nanoparticles, and surface reconstruction.

To Detail