M2TD

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

This software is for constructing inter-atomic force fields that mostly fit the results of ab-initio calculations, using multi-canonical molecular dynamic simulations. Various potential functions such as silicon, ionic crystal, and water have been pre-installed, and the user’s potential function can also be used. The default ab initio calculation solver is xTAPP and other calculation libraries are also applicable.

To Detail

EigenKernel

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

A set of routines for real-symmetric dense eigenproblems in supercomputers or massively parallel machines. Both of standard and general eigenproblems are supported. A fast computation is achieved by optimal hybrid solvers among eigenproblem libraries of ELPA, EigenExa and ScaLAPACK. The package includes a mini-appli that can be used in a benchmark test.

To Detail

CASINO

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for electronic structure calculation based on the diffusion Monte Carlo method. By using output of other packages of first-principles quantum-chemical calculation, this package performs electronic structure calculation with high accuracy. Although its computational cost is high, various physical quantities can be evaluated very accurately. It implements an efficient parallelization algorithm, and supports massively parallel computing.

To Detail

EVO

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An application for structure prediction based on the evolutionary algorithm. From an input of the atomic position in a unit cell and possible elements at each atomic position, this application predicts the stable structure and composition from the first-principles calculation and molecular dynamics in combination with the evolutionary algorithm. This application is written in Python, and uses Quantum ESPRESSO and GULP as an external program.

To Detail

fu-suite

  • Level of openness 2 ★★☆
  • Document quality 1 ★☆☆

A GUI program for structure modeling of giant molecules. This application consists of two programs, “fumodel” and “fuplot”. The former supports preparation of input data for FMO in GAMESS, whereas the latter is software for making graphs from numerical results obtained by FMO.

To Detail

SMASH

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Open source software for massively parallel quantum chemistry calculations. Energies and geometries of nano-sized molecules can be calculated without fragmentation. The program supports Hartree-Fock, density functional theory, and second-order Møller-Plesset perturbation theory calculations. The input format, execution method, and program structure are simple, and frequently used routines can be easily extracted.

To Detail

snake-dmrg

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for simulation of low-dimensional interacting electron models based on density-matrix renormalization group (DMRG). For effective models of one-dimensional quantum systems and impurity systems, this application can treat not only physical quantities of ground states but also time evolution and finite-temperature physical quantities. The program is coded in C++, and can be called from MATLAB scripts.

To Detail

SpM

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

A sparse-modeling tool for computing the spectral function from the imaginary-time Green function. It removes statistical errors in quantum Monte Carlo data, and performs a stable analytical continuation. The obtained spectral function fulfills the non-negativity and the sum rule. The computation is fast and free from tuning parameters.

To Detail

MODYLAS

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

MODYLAS is a highly parallelized general-purpose molecular dynamics (MD) simulation program appropriate for very large physical, chemical, and biological systems. It is equipped most standard MD techniques including free energy calculations based on thermodynamic integration method. Long-range forces are evaluated rigorously by the fast multipole method (FMM) without using the fast Fourier transform (FFT) in order to realize excellent scalability. The program enables investigations of large-scale real systems such as viruses, liposomes, assemblies of proteins and micelles, and polymers. It works on ordinary linux machines, too.

To Detail

MolDS

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An application for semi-empirical quantum chemistry calculation. Special emphasis is placed on molecular dynamics simulations, and is able to run efficiently on large-scale cluster computer systems using OpenMP/MPI hybrid parallelism. The code is still under development, but the source code is distributed freely under the GPL license.

To Detail