MLIP

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

Software package that implements moment tensor potentials. Potentials can be trained and used for molecular dynamics calculations using LAMMPS. Active learning combined with molecular dynamics calculations is also available.

To Detail

HiLAPW

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing all-electron method. This application produces band structure and allows structure relaxation by high-accuracy electronic structure calculations based on linearized augmented plane wave (LAPW) method for a wide range of systems. It is suited to magnetic materials, and can deal with relativistic effects such as the spin-orbit interaction.

To Detail

DDMRG

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

DDMRG (DynamicalDMRG) is a program for analyzing the dynamical properties of one-dimensional electron systems by using the density matrix renormalization group method. It simulates excited or photo-induced quantum phenomena in Mott insulators, spin-Peierls materials, organic materials, etc. Parallel computational procedures for linear and non-linear responses in low dimensional electron systems and analyzing routines for relaxation processes of excited states induced by photo-irradiation are available.

To Detail

RISM/3D-RISM

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

This is a structure analysis program for solutes and solvents, based on the statistical mechanics theory of liquids. The program determines the solvent density distribution surrounding the solute, and calculates various physical values such as the solvation free energy, compressibility, and partial molar volume. The program implements a parallelized fast Fourier transform routine for large-scale parallel computing, and can analyze molecular functions such as the ligand binding affinity of proteins, that would be difficult using other methods.

To Detail

Osaka2k

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing pseudo-potentials and plane-wave basis sets. This application is capable of performing electronic structure calculations of a wide range of physical systems such as crystals and surfaces/interfaces. It supports structure relaxation, phonon-dispersion calculation, and molecular dynamics simulation, and can deal with systems with the spin-orbit interaction.

To Detail

RuNNer

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

FORTRAN-based software package developed by the Behler Group for implementing Behler-Parinello neural network potentials. Potentials can be constructed, evaluated, and used for molecular dynamics simulations using LAMMPS. The newest generation of neural network potentials that take into account long-range electrostatic interactions are implemented.

To Detail

ELSES

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An application for electronic structure calculations and molecular dynamics simulations based on tight-binding approximation. By the Krylov subspace method, this application performs order-N electronic state calculation for large physical systems including a large number of atoms. It also supports massively-parallel computation using MPI/openMP hybrid parallelism, and has demonstrated calculation of 10^7-atom simulation on the K Computer.

To Detail

QMAS

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

QMAS is an ab-initio electronic-structure computational code package based on the projector augmented-wave (PAW) with a plane wave basis set. It computes electronic states and various physical properties efficiently with high precision for a wide range of physical systems. It provides geometry optimization, electronic states in a static magnetic field, permittivity distribution at the atomic-scale, energy and stress distribution, positron annihilation parameters, and so forth.

To Detail

NTChem

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An application for molecular science simulation. This application covers not only traditional simulation methods implemented in existing applications but also a number of novel methods for quantum chemical calculation. It can perform ab-initio electronic state calculation for a few thousands atoms/molecules as well as trace calculation of transition states in chemical reaction for a few hundreds atoms/molecules. It can also perform high-efficient massively parallel computing on large-scale parallel computers such as the K-computer.

To Detail

Atomistix Toolkit (ATK)

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Payware for evaluation of electron transport based on nonequilibrium Green’s function. This application is descended from the SIESTA application, and can calculate electronic transport properties of bulk materials and molecules inserted between leads by performing electronic state calculation under a finite bias. One can choose either density functional method or semiempirical method, and can control external factors such as gate voltages. It also implements structure optimization and analysis of chemical reaction paths.

To Detail