An open-source application for general-purpose quantum chemical calculation, laying emphasis on excited states and time evolution. It is based on time-dependent density functional theory (TDDFT) and the QM/MM calculation. It enables efficient massive parallel computing up to one hundred thousands processes. It supports the relativistic effect and offers the basis choice between the Gaussian basis and the plane-wave basis.
An open-source framework for execution management of numerical simulation. By registering target simulators, information at the time of execution (parameters, date and time, hostname, version of simulators, etc.) and calculation results are saved automatically on database. Job submission and browse of job status can be performed efficiently from web browsers.
OCTA is an integrated simulation system for soft materials developed by the joint project of industry and academia funded by Ministry of Economy, Trade and Industry(METI), Japan. OCTA consists of four simulation engines named COGNAC(Molecular dynamics simulation), PASTA(rheology simulation), SUSHI(mean field theory), MUFFIN(continuum theory) and a simulation platform (GOURMET).
An open-source application for first-principles calculation based on pseudo- potential and real-space basis. It performs electronic-state calculation such as band calculation of solids and structure optimization for a variety of physical systems. The method of time-dependent density functional theory (TDDFT) is implemented, which allows simulation of dynamical phenomena with real-time evolution of electronic states, such as chemical reaction and electronic response to time-dependent external fields. Comes with detailed tutorials and comprehensive manuals.
An application for first-principles calculation based on the order-N method. This application can perform electronic-state calculation and band calculation for various physical systems. It supports the DFT+U method, the time-dependent DFT method, molecular dynamics, etc., and can also treat van der Waals forces and phonons. By using support applications, generation of input files, transformation between different file formats, and analysis of numerical results can be performed.
An open-source application for translating chemical structure format files. More than 110 formats are supported. This application is actively being developed taking into account use and construction of database and application to infomational technology in chemistry (chemoinformatics). A graphical user interface is alsp provided for Windows.
An open-source application for simulation of one-dimensional interacting electron models based on a tensor product wavefunction method. This application supports not only electronic models but also spin and bosonic models, and can evaluate various physical quantities for ground states and low-lying excited states. This application also supports time evolution, and can treat models with long-range interactions.
Open-source software for quantum computing in quantum chemistry. OpenFermion can map the ab-initio Hamiltonian of an target molecular or material in second quantization to that in qubits. Parameters of the Hamiltonian is estimated by using other software for first-principles calculations. OpenFermion also provides users plugins to support integration with apps for quantum circuits and quantum simulators.
OpenFFT is an open source parallel package for computing multi-dimensional Fast Fourier Transforms (3-D and 4-D FFTs) of both real and complex numbers of arbitrary input size. It originates from OpenMX (Open source package for Material eXplorer). OpenFFT adopts a communication-optimal domain decomposition method that is adaptive and capable of localizing data when transposing from one dimension to another for reducing the total volume of communication. It is written in C and MPI, with support for Fortran through the Fortran interface, and employs FFTW3 for computing 1-D FFTs.
An open-source multi-purpose application for simulation of fluids and continuous fields. This application can treat complex fluids including chemical reaction, turbulence, thermal condition, and combustion as well as thermal conduction of solids, stress fields, magnetohydrodynamics, and so on. It supports parallel computing, and also prepares pre- and post-processing functions. It is coded by C++ to keep high efficiency in development, debugging, and maintenance.