An application for evaluation of thermoelectric properties and its visualization. Seebeck coefficients and Peltier coefficients can be calculated from output of the first-principles applications, OpenMX and TranSIESTA. Obtained results as well as electron density and density of states can be visualized.
CrySPY is a crystal structure prediction tool by utilizing first-principles calculations and a classical MD program. Only by inputting chemical composition, crystal structures can be automatically generated and searched. In ver. 0.6.1, random search, Bayesian optimization, and LAQA are available as searching algorithms. CrySPY is interfaced with VASP, Quantum ESPRESSO, and LAMMPS.
Open-source software for quantum computing in quantum chemistry. OpenFermion can map the ab-initio Hamiltonian of an target molecular or material in second quantization to that in qubits. Parameters of the Hamiltonian is estimated by using other software for first-principles calculations. OpenFermion also provides users plugins to support integration with apps for quantum circuits and quantum simulators.
Python library for the design, simulation, and optimization of continuous-variable quantum optical circuits. It has high-level functions for solving problems including graph and network optimization, machine learning, and chemistry, and can perform training and optimization of quantum programs using the TensorFlow backend.
Python code for a chemical database, PubChem. Users can search data in PubChem by compound name, structural information and so on. It is also possible to receive outputs as a Pandas DataFrame.
Payware for visualization mainly of fluid dynamics simulation. This application can treat large-scale and non-steady data, and supports various solvers and mesh types. It implements all the functions needed for evaluation of scalar and vector fields, and also implements auto evaluation and customization by using scripts as well as sophisticated visualization such as synchronized animation between several data.
An open-source application for first-principles molecular dynamics simulation based on pseudo-potential and plane-wave basis set. This application enables accurate molecular dynamics by density functional theory and Car-Parrinello method. It also supports structure optimization, Born-Oppenheimer molecular dynamics, path-integral molecular dynamics, calculation of response functions, the QM/MM method, and excited-state calculation.
An application for prediction of stable and metastable structures from a chemical composition. This application applies the revolutionary algorithm to structure prediction by using various external energy calculators (VASP, GULP, Quantum Espresso, CASTEP).
i-PI is a universal force engine interface written in Python, designed to be used together with an ab-initio (or force-field based) evaluation of the interactions between the atoms. This application includes a large number of sophisticated methods such as replica exchange molecular dynamics (REMD) and path integral molecular dynamics (PIMD). Inter-atomic forces can be computed by using external codes such as CP2K, Quantum ESPRESSO and LAMMPS.
Software framework for training a machine learning model to reproduce first-principles energies and then using the model to perform configurational sampling in disordered systems. It has been developed with an emphasis on multi-component solid-state systems such as metal and oxide alloys. At present, Quantum Espresso, VASP and OpenMX can be used as first-principles energy calculators, and aenet can be used to construct neural network potentials.