FMO in GAMESS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

The fragment molecular orbital (FMO) method can efficiently do quantum-mechanical calculations of large molecular systems by splitting the whole system into small fragments. The FMO program is distributed within quantum-chemical program suite GAMESS-US. FMO can provide various information regarding the structure and function of biopolymers, such as the interaction between a protein and a ligand.

To Detail

ELSES

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An application for electronic structure calculations and molecular dynamics simulations based on tight-binding approximation. By the Krylov subspace method, this application performs order-N electronic state calculation for large physical systems including a large number of atoms. It also supports massively-parallel computation using MPI/openMP hybrid parallelism, and has demonstrated calculation of 10^7-atom simulation on the K Computer.

To Detail

SMASH

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Open source software for massively parallel quantum chemistry calculations. Energies and geometries of nano-sized molecules can be calculated without fragmentation. The program supports Hartree-Fock, density functional theory, and second-order Møller-Plesset perturbation theory calculations. The input format, execution method, and program structure are simple, and frequently used routines can be easily extracted.

To Detail

RSPt

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for the first-principles calculation based on the all-electron method with localized bases. By adopting the full-potential LMTO method, high-speed electronic state calculation can be performed with a less number of bases compared with the standard all-electron method. There is no restriction on symmetries as in the LMTO-ASA method, and spin polarization and spin-orbit interaction can also be treated.

To Detail

DCDFTBMD

  • Level of openness 2 ★★☆
  • Document quality 0 ☆☆☆

An application for DFTB (Density Functional Tight Binding) calculation combined with Divide-and-Conquer (DC) method. The DC-DFTB-K program enables geometry optimization and molecular dynamics simulation of large molecular systems with linear-scaling computational cost. DFTB electronic structure calculation of 1 million atom system has been demonstrated using MPI/OpenMP hybrid parallel computation on the K computer.

To Detail