NTChem

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An application for molecular science simulation. This application covers not only traditional simulation methods implemented in existing applications but also a number of novel methods for quantum chemical calculation. It can perform ab-initio electronic state calculation for a few thousands atoms/molecules as well as trace calculation of transition states in chemical reaction for a few hundreds atoms/molecules. It can also perform high-efficient massively parallel computing on large-scale parallel computers such as the K-computer.

To Detail

CRYSTAL

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

A first-principles simulation program based on the pseudopotential method utilizing Gaussian basis sets. It can perform simulations based on Hartree-Fock and density functional theories. It can be run under Unix/Linux, and also provides a simple GUI for Windows. Binaries are distributed for a fee, but users can first try the evaluation copy.

To Detail

Gaussian

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

Standard payware for ab-initio quantum chemical calculation. This package performs electronic-state simulation of molecules by various quantum chemical theory such as Hartree-Fock theory, density functional theory, configuration interaction theory, etc. This package can perform structure optimization, calculation of transition states, evaluation of optical responses with high speed, and have many users in the world.

To Detail

Molpro

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Payware for first-principles quantum chemical calculation. This application performs molecular orbital calculation based on Hartree-Fock approximation, density functional method, and post-HF methods such as MP, f12, multi-configuration SCF, and coupled cluster method. It also implements calculation by path-integral instanton, quantum Monte Carlo, and density-matrix renormalization group method.

To Detail

TURBOMOLE

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Payware for the ab-initio quantum chemical calculation. This application preforms high-speed electronic structure calculation by introducing the RI approximation, and evaluates not only ground states but also excited states by various methods such as full RPA, TDDFT, CIS(D), CC2, ADC(2). It can also be used for evaluation of spectra data of infrared(IR), visible(Vis)/ultraviolet(UV), Raman, and circular dichroism spectroscopy.

To Detail

Jaguar

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Payware for ab initio quantum chemical calculation. This application performs high-speed quantum chemical calculation based on the density functional, Hartree-Fock theory, and MP2 theories. It can perform structure optimization, spectrum analysis, evaluation of acid dissociation constants, and so on. It can treat excited states by using TDDFT and CIS. Maestro, an application for visualization produced by the same developer, provides a useful interface for Jaguar.

To Detail

Atomistix Toolkit (ATK)

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Payware for evaluation of electron transport based on nonequilibrium Green’s function. This application is descended from the SIESTA application, and can calculate electronic transport properties of bulk materials and molecules inserted between leads by performing electronic state calculation under a finite bias. One can choose either density functional method or semiempirical method, and can control external factors such as gate voltages. It also implements structure optimization and analysis of chemical reaction paths.

To Detail

FHI-aims

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

An application for first-principles calculation based on all-electron calculation using atomic bases. This application can perform accurate electronic-state calculation for various physical systems. It supports a number of functional sets including hybrid functionals, and can support relativistic effects, many-body perturbation methods, and the GW method. It can treat over 100 elements, and keeps high efficiency in parallel calculation from a desktop machine to a high-performance parallel computer up to 10,000 CPUs.

To Detail

VASP

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★
Program package for first-principles calculation based on PAW-type pseudo-potential. This package performs electronic-state calculation of various physical systems by density functional theory with high speed, and can be used for structure optimization, evaluation of response functions, and chemical reaction. There are many users in the world, and detailed information, manuals, and tutorials are well prepared.
To Detail

DMOL3

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

An application for first-principles calculation based on density functional theory. This application is included in Material Sudio, and can evaluate electronic states and properties of various physical systems such as molecules, atomic clusters, crystals, and solid surfaces based on the all-electron method and the pseudopotential method. It can also be applied to evaluation of the chemical reaction such as catalysis and combustion reaction, and is optimized for large-scale parallel computing.

To Detail