GPAW

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for first-principles calculation based on the PAW method. By utilizing real-space or atom-localized basis sets, this application performs electronic structure calculation based on the density functional theory as well as the GW approximation. Simulations are set up using the interface provided by Atomic Simulation Environment (ASE). The code is written in C and python, and is available under GPL.

To Detail

HiLAPW

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing all-electron method. This application produces band structure and allows structure relaxation by high-accuracy electronic structure calculations based on linearized augmented plane wave (LAPW) method for a wide range of systems. It is suited to magnetic materials, and can deal with relativistic effects such as the spin-orbit interaction.

To Detail

HORTON

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for quantum chemical calculation. This application can perform quantum chemical calculation based on the Hartree-Fock method and the density functional method. The code is developed on the emphasis of readability and flexibility, and can be called from Python scripts. Quantum chemical calculation based on two-electron wave functions (geminals) is also possible.

To Detail

Jaguar

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Payware for ab initio quantum chemical calculation. This application performs high-speed quantum chemical calculation based on the density functional, Hartree-Fock theory, and MP2 theories. It can perform structure optimization, spectrum analysis, evaluation of acid dissociation constants, and so on. It can treat excited states by using TDDFT and CIS. Maestro, an application for visualization produced by the same developer, provides a useful interface for Jaguar.

To Detail

LmtART

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for all-electron first-principles calculation based on augmented plane-wave basis. It performs electronic-state calculation such as band calculation of solids and structure optimization. The all-electron method, which treats core electrons explicitly, improves accuracy compared with pseudo-potential methods. This package can also treat strong electronic correlations by combining electronic-state calculation with the dynamical mean-field approximation.

To Detail

MateriApps Installer

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of shell scripts for installing open-source applications and tools for computational materials science to macOS, Linux PC, cluster workstations, and major supercomputer systems in Japan. Major applications are preinstalled to the nation-wide joint-use supercomputer system at Institute for Solid State Physics, University of Tokyo by using MateriApps Installer.

To Detail

MateriApps LIVE!

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Debian Live Linux System that contains OS, editors, materials science application software, visualization tools, etc. An environment needed to perform materials science simulations is provided as a one package. By booting up on VirtualBox virtual machine, one can start simulations, such as the first-principles calculation, molecular dynamics, quantum chemical calculation, lattice model calculation, etc, immediately.

To Detail

Molcas

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

An application for ab initio quantum chemical calculation. This application can calculate ground states and excited states of molecules by the SCF/DFT, the CASSCF/RASSCF, and the CASPT2/RASPT2 method. It is architected especially for obtaining potential energy surfaces of excited states, and maintains high-speed, high-accuracy, and robust open codes.

To Detail

Molpro

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Payware for first-principles quantum chemical calculation. This application performs molecular orbital calculation based on Hartree-Fock approximation, density functional method, and post-HF methods such as MP, f12, multi-configuration SCF, and coupled cluster method. It also implements calculation by path-integral instanton, quantum Monte Carlo, and density-matrix renormalization group method.

To Detail

MOPAC

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for semi-empirical quantum chemical calculation based on NDDO (neglect of diatomic differential overlap) approximation. This program calculates, for a given molecule or a crystal, molecular orbits and atomic forces, as well as vibration spectra, thermal quantities (heat of formation etc.), isotopic exchange effect, force constant, and so on. It can also treat radicals and ions.

To Detail