DFTB+

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for quantum chemical calculation based on DFTB (Density Functional based Tight Binding). This application performs structure
optimization and molecular dynamics by the DFTB force field as well as ordinary energy calculation, and implements parallel computing by OpenMP. A tool for visualization of molecular orbitals and an extended versions supporting MPI parallel computation or electron transport calculation by the nonequilibrium Green’s function method are also
available.

To Detail

GPAW

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for first-principles calculation based on the PAW method. By utilizing real-space or atom-localized basis sets, this application performs electronic structure calculation based on the density functional theory as well as the GW approximation. Simulations are set up using the interface provided by Atomic Simulation Environment (ASE). The code is written in C and python, and is available under GPL.

To Detail

FMO in GAMESS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

The fragment molecular orbital (FMO) method can efficiently do quantum-mechanical calculations of large molecular systems by splitting the whole system into small fragments. The FMO program is distributed within quantum-chemical program suite GAMESS-US. FMO can provide various information regarding the structure and function of biopolymers, such as the interaction between a protein and a ligand.

To Detail

CP2K

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source first-principles calculation library for pseudopotential and all-electron calculations. One of or a mixture of Gaussian and plane wave basis sets can be used. A lot of the development focuses on massively parallel calculations and linear scaling. The user can choose various calculation methods including density functional theory and Hartree-Fock.

To Detail

AkaiKKR

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

AkaiKKR is a first-principles all-electron code package that calculates the electronic structure of condensed matters using the Green’s function method (KKR). It is based on the density functional theory and is applicable to a wide range of physical systems. It can be used to simulate not only periodic crystalline solids, but also used to calculate electronic structures of impurity systems and, by using the coherent potential approximation (CPA), random systems such as disordered alloys, mixed crystals, and spin-disordered systems.

To Detail

GAMESS-US

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for ab initio quantum chemical calculation. This application performs electronic structure calculation of molecules by the Hartree-Fock, density functional, many-body perturbation, configuration interaction theories, and so on. Even though this application is freeware, it succeeds in maintaining high-quality and high-performance codes by active development, and has a number of world-wide users. It histrically shares core programs with GAMESS-UK.

To Detail

LmtART

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for all-electron first-principles calculation based on augmented plane-wave basis. It performs electronic-state calculation such as band calculation of solids and structure optimization. The all-electron method, which treats core electrons explicitly, improves accuracy compared with pseudo-potential methods. This package can also treat strong electronic correlations by combining electronic-state calculation with the dynamical mean-field approximation.

To Detail

HORTON

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for quantum chemical calculation. This application can perform quantum chemical calculation based on the Hartree-Fock method and the density functional method. The code is developed on the emphasis of readability and flexibility, and can be called from Python scripts. Quantum chemical calculation based on two-electron wave functions (geminals) is also possible.

To Detail

PAICS

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

PAICS is a program of quantum chemical calculation. In this program, fragment molecular orbital (FMO) method is adopted, by which large molecules including biomolecular systems can be treated with several quantum chemical approaches including HF and MP2 methods. At the same time, PaicsView has been developed, which is a supporting program for making input files and analyzing calculation results.

To Detail

ORCA

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application of semi-empirical/ab-initio quantum chemical calculation that comes under an academic license. It performs various quantum chemical calculations based on Hartree-Fock theory, density functional theory, and configuration interaction theory, yielding electronic states and enabling structure optimization and molecular spectrum analysis. Molecular dynamics calculation based on the QM/MM method is also possible by using this software in combination with GROMACS.

To Detail