NAP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A group of applications that perform molecular dynamics, hybrid quantum/classical mechanical simulation, search of chemical reaction path by the nudged elastic band method, and potential parameter fitting. The molecular dynamics code includes interatomic potentials for several metals and semiconductors, and is capable of parallel computation based of spatial decomposition.

To Detail

DC

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An electronic state solver distributed with GAMESS, the quantum chemical (QM) calculation software. Combining energy density analysis and Divide-and-Conquer (DC) method, accurate QM calculation with electronic correlation is solved in a short time. Highly accurate QM calculations for many-atom/nano-scale material can be solved when run on a high performance super computer.

To Detail

exciting

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation based on all-electron calculations. In addition to ground-state energy and forces on atoms obtained by density functional theory, it focuses on investigation of excited state properties using time-dependent density functional theory as well as many-body perturbation theory. It is parallelized using MPI and is also optimized for multithreaded math libraries such as BLAS and LAPACK.

To Detail

ORCA

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application of semi-empirical/ab-initio quantum chemical calculation that comes under an academic license. It performs various quantum chemical calculations based on Hartree-Fock theory, density functional theory, and configuration interaction theory, yielding electronic states and enabling structure optimization and molecular spectrum analysis. Molecular dynamics calculation based on the QM/MM method is also possible by using this software in combination with GROMACS.

To Detail

NTChem

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An application for molecular science simulation. This application covers not only traditional simulation methods implemented in existing applications but also a number of novel methods for quantum chemical calculation. It can perform ab-initio electronic state calculation for a few thousands atoms/molecules as well as trace calculation of transition states in chemical reaction for a few hundreds atoms/molecules. It can also perform high-efficient massively parallel computing on large-scale parallel computers such as the K-computer.

To Detail

Molpro

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Payware for first-principles quantum chemical calculation. This application performs molecular orbital calculation based on Hartree-Fock approximation, density functional method, and post-HF methods such as MP, f12, multi-configuration SCF, and coupled cluster method. It also implements calculation by path-integral instanton, quantum Monte Carlo, and density-matrix renormalization group method.

To Detail

PySCF

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python-based simulations of chemistry framework (PySCF) is a general-purpose electronic structure platform written in Python. Users can perform mean-field and post-mean-field methods with standard Gaussian basis functions. This package also provides several interfaces to other software such as BLOCK and Libxc.

To Detail

TURBOMOLE

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Payware for the ab-initio quantum chemical calculation. This application preforms high-speed electronic structure calculation by introducing the RI approximation, and evaluates not only ground states but also excited states by various methods such as full RPA, TDDFT, CIS(D), CC2, ADC(2). It can also be used for evaluation of spectra data of infrared(IR), visible(Vis)/ultraviolet(UV), Raman, and circular dichroism spectroscopy.

To Detail

BLOCK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for quantum chemical calculation based on the density-matrix renormalization group (DMRG). For systems with a number of atomic orbitals, low-lying energy eigenvalues can be calculated in high accuracy of order of 1kcal/mol. This application is suitable especially to calculation of multi-orbital systems with one-dimensional topology such as chain-like or circular-like configuration of orbits.

To Detail

NWChem

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for general-purpose quantum chemical calculation, laying emphasis on excited states and time evolution. It is based on time-dependent density functional theory (TDDFT) and the QM/MM calculation. It enables efficient massive parallel computing up to one hundred thousands processes. It supports the relativistic effect and offers the basis choice between the Gaussian basis and the plane-wave basis.

To Detail