OpenMX

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

OpenMX is a first-principles software based on the pseudo-atomic localized basis functions. It calculates electronic structure rapidly for a wide range of materials including crystals, interfaces, liquids, etc. It speedily provides molecular dynamics simulation and structural optimization of large-scale systems and also implements a hybrid parallelism. It is able to deal with non-collinear magnetism and non-equilibrium Green’s function calculations for electrical conductions.

To Detail

HORTON

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for quantum chemical calculation. This application can perform quantum chemical calculation based on the Hartree-Fock method and the density functional method. The code is developed on the emphasis of readability and flexibility, and can be called from Python scripts. Quantum chemical calculation based on two-electron wave functions (geminals) is also possible.

To Detail

Molcas

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

An application for ab initio quantum chemical calculation. This application can calculate ground states and excited states of molecules by the SCF/DFT, the CASSCF/RASSCF, and the CASPT2/RASPT2 method. It is architected especially for obtaining potential energy surfaces of excited states, and maintains high-speed, high-accuracy, and robust open codes.

To Detail

CP2K

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source first-principles calculation library for pseudopotential and all-electron calculations. One of or a mixture of Gaussian and plane wave basis sets can be used. A lot of the development focuses on massively parallel calculations and linear scaling. The user can choose various calculation methods including density functional theory and Hartree-Fock.

To Detail

CRYSTAL

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

A first-principles simulation program based on the pseudopotential method utilizing Gaussian basis sets. It can perform simulations based on Hartree-Fock and density functional theories. It can be run under Unix/Linux, and also provides a simple GUI for Windows. Binaries are distributed for a fee, but users can first try the evaluation copy.

To Detail

Gaussian

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

Standard payware for ab-initio quantum chemical calculation. This package performs electronic-state simulation of molecules by various quantum chemical theory such as Hartree-Fock theory, density functional theory, configuration interaction theory, etc. This package can perform structure optimization, calculation of transition states, evaluation of optical responses with high speed, and have many users in the world.

To Detail

Octopus

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for first-principles calculation based on pseudo- potential and real-space basis. It performs electronic-state calculation such as band calculation of solids and structure optimization for a variety of physical systems. The method of time-dependent density functional theory (TDDFT) is implemented, which allows simulation of dynamical phenomena with real-time evolution of electronic states, such as chemical reaction and electronic response to time-dependent external fields. Comes with detailed tutorials and comprehensive manuals.

To Detail

ONETEP

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

An application for first-principles calculation based on the order-N method. This application can perform electronic-state calculation and band calculation for various physical systems. It supports the DFT+U method, the time-dependent DFT method, molecular dynamics, etc., and can also treat van der Waals forces and phonons. By using support applications, generation of input files, transformation between different file formats, and analysis of numerical results can be performed.

To Detail

PHASE

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An electronic structure calculation program based on the density functional theory and the pseudo potential scheme with a plane wave basis set. This is a powerful tool to predict the physical properties of unknown materials and to simulate experimental results such as STM and EELS. This also enables users to perform long time molecular dynamics simulations and to analyze chemical reaction processes. This program is available on a wide variety of computers from single-core PCs to massive parallel computers like K computer. The whole source code is open to public.

To Detail

PIMD

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for molecular simulations. This application supports various methods such as classical and ab initio molecular dynamics, path integral simulations, replica exchange simulations, metadynamics, string method, surface hopping dynamics, QM/MM simulations, and so on. A hierarchical parallelization between molecular structures (replicas) and force fields (adiabatic potentials) enables fast and efficient computation.

To Detail